Mar 24, 2018
Hubble solves cosmic 'whodunit' with interstellar forensics
The players are two dwarf galaxies, the Large Magellanic Cloud and the Small Magellanic Cloud, both of which orbit our own Milky Way Galaxy. But as they go around the Milky Way, they are also orbiting each other. Each one tugs at the other, and one of them has pulled out a huge cloud of gas from its companion.
Called the Leading Arm, this arching collection of gas connects the Magellanic Clouds to the Milky Way. Roughly half the size of our galaxy, this structure is thought to be about 1 or 2 billion years old. Its name comes from the fact that it's leading the motion of the Magellanic Clouds.
The enormous concentration of gas is being devoured by the Milky Way and feeding new star birth in our galaxy. But which dwarf galaxy is doing the pulling, and whose gas is now being feasted upon? After years of debate, scientists now have the answer to this "whodunit" mystery.
"There's been a question: Did the gas come from the Large Magellanic Cloud or the Small Magellanic Cloud? At first glance, it looks like it tracks back to the Large Magellanic Cloud," explained lead researcher Andrew Fox of the Space Telescope Science Institute in Baltimore, Maryland. "But we've approached that question differently, by asking: What is the Leading Arm made of? Does it have the composition of the Large Magellanic Cloud or the composition of the Small Magellanic Cloud?"
Fox's research is a follow-up to his 2013 work, which focused on a trailing feature behind the Large and Small Magellanic Clouds. This gas in this ribbon-like structure, called the Magellanic Stream, was found to come from both dwarf galaxies. Now Fox wondered about its counterpart, the Leading Arm. Unlike the trailing Magellanic Stream, this tattered and shredded "arm" has already reached the Milky Way and survived its journey to the galactic disk.
The Leading Arm is a real-time example of gas accretion, the process of gas falling onto galaxies. This is very difficult to see in galaxies outside the Milky Way, because they are too far away and too faint. "As these two galaxies are in our backyard, we essentially have a front-row seat to view the action," said collaborator Kat Barger at Texas Christian University.
In a new kind of forensics, Fox and his team used Hubble's ultraviolet vision to chemically analyze the gas in the Leading Arm. They observed the light from seven quasars, the bright cores of active galaxies that reside billions of light-years beyond this gas cloud. Using Hubble's Cosmic Origins Spectrograph, the scientists measured how this light filters through the cloud.
In particular, they looked for the absorption of ultraviolet light by oxygen and sulfur in the cloud. These are good gauges of how many heavier elements reside in the gas. The team then compared Hubble's measurements to hydrogen measurements made by the National Science Foundation's Robert C. Byrd Green Bank Telescope at the Green Bank Observatory in West Virginia, as well as several other radio telescopes.
"With the combination of Hubble and Green Bank Telescope observations, we can measure the composition and velocity of the gas to determine which dwarf galaxy is the culprit," explained Barger.
After much analysis, the team finally had conclusive chemical "fingerprints" to match the origin of the Leading Arm's gas. "We've found that the gas matches the Small Magellanic Cloud," said Fox. "That indicates the Large Magellanic Cloud is winning the tug-of-war, because it has pulled so much gas out of its smaller neighbor."
This answer was possible only because of Hubble's unique ultraviolet capability. Because of the filtering effects of Earth's atmosphere, ultraviolet light cannot be studied from the ground. "Hubble is the only game in town," explained Fox. "All the lines of interest, including oxygen and sulfur, are in the ultraviolet. So if you work in the optical and infrared, you can't see them."
Gas from the Leading Arm is now crossing the disk of our galaxy. As it crosses, it interacts with the Milky Way's own gas, becoming shredded and fragmented.
Read more at Science Daily
Mysterious head of a pharaoh discovered by Swansea Egyptologist
This is the front aspect of the artifact. |
The opportunity to handle genuine Egyptian artefacts is provided by the Egypt Centre to students studying Egyptology at Swansea University. During a recent handling session for an Egyptian Art and Architecture module Dr Kenneth Griffin, from the University's Department of Classics, Ancient History and Egyptology, noticed that one of the objects chosen was much more interesting than initially thought.
Consisting of two irregularly shaped limestone fragments that have been glued together, the object had been kept in storage for over twenty years and was requested for the handling session based only on an old black and white photograph.
The front side depicts the head of a figure whose face is unfortunately missing, with the remains of a fan directly behind. Traces of hieroglyphs are also present above the head. The iconography of the piece indicates that it represents a ruler of Egypt, particularly with the presence of the uraeus (cobra) on the forehead of the figure. Who is this mysterious pharaoh and where did the fragment originate from?
A search of the Egypt Centre records provides no information on the original provenance or find spot of the object. What is known is that it came to Swansea in 1971 as part of the distribution of objects belonging to Sir Henry Wellcome (1853-1936), the pharmaceutical entrepreneur based in London. The fragments are less than 5cm thick and had clearly been removed from the wall of a temple or tomb, as can be seen from the cut marks on the back.
Having visited Egypt on over fifty occasions, Dr Griffin quickly recognised the iconography as being similar to reliefs within the temple of Hatshepsut at Deir el-Bahri (Luxor), which was constructed during the height of the New Kingdom. In particular, the treatment of the hair, the fillet headband with twisted uraeus, and the decoration of the fan are all well-known at Deir el-Bahri.
Most importantly, the hieroglyphs above the head -- part of a formulaic text attested elsewhere at the temple -- use a feminine pronoun, a clear indication that the figure is female.
Hatshepsut was the fifth pharaoh of the Eighteenth Dynasty (c.1478-1458 BC) and one of only a handful of women to have held this position. Early in her reign she was represented as a female wearing a long dress, but she gradually took on more masculine traits, including being depicted with a beard. The reign of Hatshepsut was one of peace and prosperity, which allowed her to construct monuments throughout Egypt. Her memorial temple at Deir el-Bahri, built to celebrate and maintain her cult, is a masterpiece of Egyptian architecture.
Many fragments were taken from this site during the late nineteenth century, before the temple was excavated by the Egypt Exploration Fund (now Egypt Exploration Society) between 1902-1909. Since 1961 the Polish Archaeological Mission to Egypt has been excavating, restoring, and recording the temple.
Yet the mystery of the precious find doesn't end there. On the rear of the upper fragment, the head of a man with a short beard is depicted. Initially there was no explanation for this, but it is now clear that the upper fragment had been removed and recarved in more recent times in order to complete the face of the lower fragment. The replacement of the fragment below the figure would also explain the unusual cut of the upper fragment. This was probably done by an antiques dealer, auctioneer, or even the previous owner of the piece in order to increase its value and attractiveness. It was eventually decided at an unknown date to glue the fragments together in the original layout, which is how they now appear.
While Deir el-Bahri seems the most likely provenance for this artefact, further research is needed in order to confirm this and it may even be possible to one day determine the exact spot the fragments originated from.
Given the importance of the object, the head of Hatshepsut has now been placed on display in a prominent position within the House of Life at the Egypt Centre so that the relief can be appreciated by visitors to the Centre.
Dr Griffin said: "The Egypt Centre is a wonderful resource and is certainly one of the major factors in attracting students to study Egyptology at Swansea University."
Read more at Science Daily
Mar 23, 2018
Different neural strategies for junior high school male and female English learners
Children learn their native language with enviable ease and speed, but learning a second language is a far more varied process; though there has been much research into how the brain deals with new languages, we still don't know how variations in gender, age etc. specifically affect how we learn a new tongue.
A team led by Prof. Fumitaka Homae studied a rarely targeted population for this subject: Japanese junior high school students learning English as a second language in a school environment. The majority of work into the neuroscience behind learning a second language is based on immigrant populations in the United States, and children in the multi-lingual environment of Europe.
The boys and girls were given a standardized English test and a test of "Working Memory," a temporary storage in the brain used to organize, manipulate and analyze newly arrived information. They then listened to English sentences, including some with grammatical errors; observations of brain activity were taken using functional near-infrared spectroscopy (fNIRS) and event-related potential (ERP) measurements. fNIRS tells us which parts of the brain are active; ERP gives us an idea of how brain activity varies with time.
The results revealed a surprising disparity in how boys and girls deal with sentences. The girls performed better on the tests, and had more working memory. However, boys showed no correlation between working memory and performance, while girls did. Looking at brain activity, fNIRS revealed that boys showed increased activation with proficiency in the front of the brain when they heard a correct sentence, while girls showed more at the back. The front is linked with "syntactic" processing i.e. rule-based understanding of sentences; the back is associated with a wider range of language processing. Interestingly, boys displayed an overall decreased response for incorrect sentences; girls showed the exact opposite.
ERPs also showed disparities, with boys exhibiting a strong response to incorrect sentences from an early time, a phase thought to be associated with "syntactic" processing. Girls only showed a difference between correct and incorrect sentences at later times.
The emerging picture is of two different strategies to cope with a second language. Boys leverage efficient processing and rule-based "implicit" thinking; girls draw on a wider range of linguistic information, achieving "explicit" comprehension of sentences. A cursory look at test scores may have simply pointed to girls being "better" at learning English, but the mechanisms tell a far more interesting story.
Read more at Science Daily
The brain learns completely differently than we've assumed since the 20th century
In 1949 Donald Hebb's pioneering work suggested that learning occurs in the brain by modifying the strength of the synapses, whereas neurons function as the computational elements in the brain. This has remained the common assumption until today.
Using new theoretical results and experiments on neuronal cultures, a group of scientists, led by Prof. Ido Kanter, of the Department of Physics and the Gonda (Goldschmied) Multidisciplinary Brain Research Center at Bar-Ilan University, has demonstrated that the central assumption for nearly 70 years that learning occurs only in the synapses is mistaken.
In an article published today in the journal Scientific Reports, the researchers go against conventional wisdom to show that learning is actually done by several dendrites, similar to the slow learning mechanism currently attributed to the synapses.
"The newly discovered process of learning in the dendrites occurs at a much faster rate than in the old scenario suggesting that learning occurs solely in the synapses. In this new dendritic learning process, there are a few adaptive parameters per neuron, in comparison to thousands of tiny and sensitive ones in the synaptic learning scenario," said Prof. Kanter, whose research team includes Shira Sardi, Roni Vardi, Anton Sheinin, Amir Goldental and Herut Uzan.
The newly suggested learning scenario indicates that learning occurs in a few dendrites that are in much closer proximity to the neuron, as opposed to the previous notion. "Does it make sense to measure the quality of air we breathe via many tiny, distant satellite sensors at the elevation of a skyscraper, or by using one or several sensors in close proximity to the nose? Similarly, it is more efficient for the neuron to estimate its incoming signals close to its computational unit, the neuron," says Kanter. Hebb's theory has been so deeply rooted in the scientific world for 70 years that no one has ever proposed such a different approach. Moreover, synapses and dendrites are connected to the neuron in a series, so the exact localized site of the learning process seemed irrelevant.
Another important finding of the study is that weak synapses, previously assumed to be insignificant even though they comprise the majority of our brain, play an important role in the dynamics of our brain. They induce oscillations of the learning parameters rather than pushing them to unrealistic fixed extremes, as suggested in the current synaptic learning scenario.
Read more at Science Daily
Two-billion-year-old salt rock reveals rise of oxygen in ancient atmosphere
A sample of 2-billion-year-old salt (pink-white recrystallized halite) with embedded fragments of calcium sulfate from a geological drill core in Russian Karelia. |
The study by an international team of institutions including Princeton University found that the rise in oxygen that occurred about 2.3 billion years ago, known as the Great Oxidation Event, was much more substantial than previously indicated.
"Instead of a trickle, it was more like a firehose," said Clara Blättler, a postdoctoral research fellow in the Department of Geosciences at Princeton and first author on the study, which was published online by the journal Science on Thursday, March 22. "It was a major change in the production of oxygen."
The evidence for the profound upswing in oxygen comes from crystalized salt rocks extracted from a 1.2-mile-deep hole in the region of Karelia in northwest Russia. These salt crystals were left behind when ancient seawater evaporated, and they give geologists unprecedented clues to the composition of the oceans and atmosphere on Earth more than 2 billion years ago.
The key indication of the increase in oxygen production came from finding that the mineral deposits contained a surprisingly large amount of a component of seawater known as sulfate, which was created when sulfur reacted with oxygen.
"This is the strongest ever evidence that the ancient seawater from which those minerals precipitated had high sulfate concentrations reaching at least 30 percent of present-day oceanic sulfate as our estimations indicate," said Aivo Lepland, a researcher at the Geological Survey of Norway, a geology specialist at Tallinn University of Technology, and senior author on the study. "This is much higher than previously thought and will require considerable rethinking of the magnitude of oxygenation of Earth's 2-billion year old atmosphere-ocean system."
Oxygen makes up about 20 percent of air and is essential for life as we know it. According to geological evidence, oxygen began to show up in the Earth's atmosphere between 2.4 and 2.3 billion years ago.
Until the new study, however, geologists were uncertain whether this buildup in oxygen -- caused by the growth of cyanobacteria capable of photosynthesis, which involves taking in carbon dioxide and giving off oxygen -- was a slow event that took millions of years or a more rapid event.
"It has been hard to test these ideas because we didn't have evidence from that era to tell us about the composition of the atmosphere," Blättler said.
The recently discovered crystals provide that evidence. The salt crystals collected in Russia are over a billion years older than any previously discovered salt deposits. The deposits contain halite, which is called rock salt and is chemically identical to table salt or sodium chloride, as well as other salts of calcium, magnesium and potassium.
Normally these minerals dissolve easily and would be washed away over time, but in this case they were exceptionally well preserved deep within the Earth. Geologists from the Geological Survey of Norway in collaboration with the Karelian Research Center in Petrozavodsk, Russia, recovered the salts from a drilling site called the Onega Parametric Hole (OPH) on the western shores of Lake Onega.
The unique qualities of the sample make them very valuable in piecing together the history of what happened after the Great Oxidation Event, said John Higgins, assistant professor of geosciences at Princeton, who provided interpretation of the geochemical analysis along with other co-authors.
"This is a pretty special class of geologic deposits," Higgins said. "There has been a lot of debate as to whether the Great Oxidation Event, which is tied to increase and decrease in various chemical signals, represents a big change in oxygen production, or just a threshold that was crossed. The bottom line is that this paper provides evidence that the oxygenation of the Earth across this time period involved a lot of oxygen production."
Read more at Science Daily
Early life experiences influence DNA in the adult brain
"We are taught that our DNA is something stable and unchanging which makes us who we are, but in reality it's much more dynamic," says Rusty Gage, a professor in Salk's Laboratory of Genetics. "It turns out there are genes in your cells that are capable of copying themselves and moving around, which means that, in some ways, your DNA does change."
For at least a decade, scientists have known that most cells in the mammalian brain undergo changes to their DNA that make each neuron, for example, slightly different from its neighbor. Some of these changes are caused by "jumping" genes -- officially known as long interspersed nuclear elements (LINEs) -- that move from one spot in the genome to another. In 2005, the Gage lab discovered that a jumping gene called L1, which was already known to copy and paste itself into new places in the genome, could jump in developing neuronal brain cells.
The team had hypothesized that such changes create potentially helpful diversity among brain cells, fine-tuning function, but might also contribute to neuropsychiatric conditions.
"While we've known for a while that cells can acquire changes to their DNA, it's been speculated that maybe it's not a random process," says Tracy Bedrosian, a former Salk research associate and first author of the study. "Maybe there are factors in the brain or in the environment that cause changes to happen more or less frequently."
To find out, Gage, Bedrosian and colleagues began by observing natural variations in maternal care between mice and their offspring. They then looked at DNA from the offspring's hippocampus, which is involved in emotion, memory and some involuntary functions. The team discovered a correlation between maternal care and L1 copy number: mice with attentive mothers had fewer copies of the jumping gene L1, and those with neglectful mothers had more L1 copies, and thus more genetic diversity in their brains.
To make sure the difference wasn't a coincidence, the team conducted a number of control experiments, including checking the DNA of both parents of each litter to make sure the offspring didn't just inherit their numbers of L1s from a parent, as well as verifying that the extra DNA was actually genomic DNA and not stray genetic material from outside the cell nucleus. Lastly, they cross-fostered offspring, so that mice born to neglectful mothers were raised by attentive ones, and vice versa. Initial results of the correlation between L1 numbers and mothering style held: mice born to neglectful mothers but raised by attentive ones had fewer copies of L1 than mice born to attentive mothers but raised by neglectful ones.
The researchers hypothesized that offspring whose mothers were neglectful were more stressed and that somehow this was causing genes to copy and move around more frequently. Interestingly, there was no similar correlation between maternal care and the numbers of other known jumping genes, which suggested a unique role for L1. So, next, the team looked at methylation -- the pattern of chemical marks on DNA that signals whether genes should or should not be copied and that can be influenced by environmental factors. In this case, methylation of the other known jumping genes was consistent for all offspring. But it was a different story with L1: mice with neglectful mothers had noticeably fewer methylated L1 genes than those with attentive mothers, suggesting that methylation is the mechanism responsible for the mobility of the L1 gene.
"This finding agrees with studies of childhood neglect that also show altered patterns of DNA methylation for other genes," says Gage, who holds the Vi and John Adler Chair for Research on Age-Related Neurodegenerative Diseases. "That's a hopeful thing, because once you understand a mechanism, you can begin to develop strategies for intervention"
The researchers emphasize that at this point it's unclear whether there are functional consequences of increased L1 elements. Future work will examine whether the mice's performance on cognitive tests, such as remembering which path in a maze leads to a treat, can be correlated with the number of L1 genes.
Other authors included Carolina Quayle and Nicole Novaresi of Salk.
Read more at Science Daily
Mysterious skeleton shows molecular complexity of bone diseases
The 6-inch skeleton, nicknamed Ata, was discovered more than a decade ago in an abandoned town in the Atacama Desert of Chile. |
The findings stamp out any remaining quandaries about the specimen's home planet -- it's without a doubt human -- but more than that, the analysis answers questions about remains that have long been a genetic enigma.
After five years of deep genomic analysis, Garry Nolan, PhD, professor of microbiology and immunology at Stanford, and Atul Butte, MD, PhD, director of the Institute for Computational Health Sciences at the University of California-San Francisco, have pinpointed the mutations responsible for the anomalous specimen. The researchers found mutations in not one but several genes known to govern bone development; what's more, some of these molecular oddities have never been described before.
"To me, it seems that when doctors perform analyses for patients and their families, we're often searching for one cause -- one super-rare or unusual mutation that can explain the child's ailment. But in this case, we're pretty confident that multiple things went wrong," said Butte. It's an indication, he said, that looking for a single mutation, or even mutations that are already known to cause a particular disease, can discourage researchers from looking for other potential genetic causes and, in turn, potential treatments for patients.
Nolan, who holds the Rachford and Carlota Harris Professorship, and Butte, a former Stanford faculty member who now holds the Priscilla Chan and Mark Zuckerberg Distinguished Professorship at UCSF, are senior authors of the study, which will be published online March 22 in Genome Research. Sanchita Bhattacharya, PhD, senior research specialist at UCSF, is the lead author.
A human? A primate? An alien?
The skeleton, nicknamed Ata, was discovered more than a decade ago in an abandoned town in the Atacama Desert of Chile. After trading hands and eventually finding a permanent home in Spain, the mummified specimen started to garner public attention. Standing just 6 inches tall -- about the length of a dollar bill -- with an angular, elongated skull and sunken, slanted eye sockets, the internet began to bubble with other-worldly hullabaloo and talk of ET.
"I had heard about this specimen through a friend of mine, and I managed to get a picture of it," Nolan said. "You can't look at this specimen and not think it's interesting; it's quite dramatic. So I told my friend, 'Look, whatever it is, if it's got DNA, I can do the analysis.'"
With the help of Ralph Lachman, MD, a professor of radiology at Stanford and an expert in a type of pediatric bone disease, Nolan set the record straight. Their analysis pointed to a decisive conclusion: This was the skeleton of a human female, likely a fetus, that had suffered severe genetic mutations. In addition, Nolan saw that Ata, though most likely a fetus, had the bone composition of a 6-year-old, an indication that she had a rare, bone-aging disorder.
To understand the genetic underpinnings of Ata's physicality, Nolan turned to Butte for help in genomic evaluation. He accepted the challenge, running a work-up so comprehensive it nearly rose to the level of patient care. Butte noted that some people might wonder about the point of such in-depth analyses.
"We thought this would be an interesting exercise in applying the tools that we have today to really see what we could find," he said. "The phenotype, the symptoms and size of this girl were extremely unusual, and analyzing these kinds of really puzzling, old samples teaches us better how to analyze the DNA of kids today under current conditions."
New insights through an old skeleton
To understand the genetic drivers at play, Butte and Nolan extracted a small DNA sample from Ata's ribs and sequenced the entire genome. The skeleton is approximately 40 years old, so its DNA is modern and still relatively intact. Moreover, data collected from whole-genome sequencing showed that Ata's molecular composition aligned with that of a human genome. Nolan noted that 8 percent of the DNA was unmatchable with human DNA, but that was due to a degraded sample, not extraterrestrial biology. (Later, a more sophisticated analysis was able to match up to 98 percent of the DNA, according to Nolan.)
The genomic results confirmed Ata's Chilean descent and turned up a slew of mutations in seven genes that separately or in combinations contribute to various bone deformities, facial malformations or skeletal dysplasia, more commonly known as dwarfism. Some of these mutations, though found in genes already known to cause disease, had never before been associated with bone growth or developmental disorders.
Knowing these new mutational variants could be useful, Nolan said, because they add to the repository of known mutations to look for in humans with these kinds of bone or physical disorders.
Read more at Science Daily
Mar 22, 2018
When the Mediteranean Sea flooded human settlements
Using the coccolithophore Emiliana huxleyi the researchers were able to determine the salinity of the Northern Aegean Sea some 11,000 to 5,000 years ago. |
Originating in the Middle East, the Neolithic Age witnessed one of the most significant upheavals of civilization in human history: the transition from a culture of hunter-gatherers to an agricultural and sedentary lifestyle. During the Neolithic revolution, agricultural societies also began to spread toward Southeastern Europe. However, archeological digs show that the development of settlements temporarily declined about 7,600 years ago. Researchers from Frankfurt have now identified one of the likely causes for this.
"Approximately 7,600 years ago, the sea level must have risen abruptly in the Mediterranean regions bordering Southeastern Europe. The northern Aegean, the Marmara Sea and the Black Sea recorded an increase of more than one meter. This led to the flooding of low-lying coastal areas that would have been ideal areas for settlement," says lead author Professor Dr. Jens Herrle of the German Senckenberg Biodiversity and Climate Research Centre and Goethe University.
The new study is based on a sediment core from the ocean floor of the northern Aegean Sea, which allowed Herrle and his collaborators to reconstruct the level of salinity in this part of the Mediterranean between 11,000 and 5,000 years ago. The ocean floor is richly abundant in tiny fossils of the calcified algae species Emiliania huxleyi. Viewed up-close under a scanning electron microscope, size changes in these algae preserved a signal of the level of salinity in the surface water of the Aegean during their lifetime.
"These calcifying algae evidence two rapid decreases in the salt content, at approximately 8,400 and again 7,600 years ago, which can only be explained by the fact that a higher volume of low-saline surface water flowed from the Black Sea into the northern Aegean at these times. A prerequisite for this is a rapid rise in sea levels that would lead to an increased outflow of surface water in this direction. The source of this may have been Lake Agassiz in North America. This glacial meltwater lake was enclosed in ice and experienced a massive breach during this period, which emptied an enormous volume of water into the ocean," explains Herrle.
The new evidence supports a conclusion of extensive flooding along the edges of the northeastern Mediterranean, coinciding with two standstills in the Neolithic revolution. The earlier change in sea-level approximately 8,400 years ago highlighted by the new salinity record coincides with archeological dates suggesting that settlement on low-lying areas had already been significantly impeded by rising sea levels and the subsequent climatic changes. The renewed rise in sea levels 800 years later likely further hampered the transition to agricultural communities.
Read more at Science Daily
Scientists detect radio echoes of a black hole feeding on a star
Artist's impression of an inner accretion flow and a jet from a supermassive black hole when it is actively feeding, for example, from a star that it recent tore apart. |
Scientists from MIT and Johns Hopkins University have now detected radio signals from the event that match very closely with X-ray emissions produced from the same flare 13 days earlier. They believe these radio "echoes," which are more than 90 percent similar to the event's X-ray emissions, are more than a passing coincidence. Instead, they appear to be evidence of a giant jet of highly energetic particles streaming out from the black hole as stellar material is falling in.
Dheeraj Pasham, a postdoc in MIT's Kavli Institute for Astrophysics and Space Research, says the highly similar patterns suggest that the power of the jet shooting out from the black hole is somehow controlled by the rate at which the black hole is feeding on the obliterated star.
"This is telling us the black hole feeding rate is controlling the strength of the jet it produces," Pasham says. "A well-fed black hole produces a strong jet, while a malnourished black hole produces a weak jet or no jet at all. This is the first time we've seen a jet that's controlled by a feeding supermassive black hole."
Pasham says scientists have suspected that black hole jets are powered by their accretion rate, but they have never been able to observe this relationship from a single event.
"You can do this only with these special events where the black hole is just sitting there doing nothing, and then suddenly along comes a star, giving it a lot of fuel to power itself," Pasham says. "That's the perfect opportunity to study such things from scratch, essentially."
Pasham and his collaborator, Sjoert van Velzen of Johns Hopkins University, report their results in a paper published this week in the Astrophysical Journal.
Up for debate
Based on theoretical models of black hole evolution, combined with observations of distant galaxies, scientists have a general understanding for what transpires during a tidal disruption event: As a star passes close to a black hole, the black hole's gravitational pull generates tidal forces on the star, similar to the way in which the moon stirs up tides on Earth.
However, a black hole's gravitational forces are so immense that they can disrupt the star, stretching and flattening it like a pancake and eventually shredding the star to pieces. In the aftermath, a shower of stellar debris rains down and gets caught up in an accretion disk -- a swirl of cosmic material that eventually funnels into and feeds the black hole.
This entire process generates colossal bursts of energy across the electromagnetic spectrum. Scientists have observed these bursts in the optical, ultraviolet, and X-ray bands, and also occasionally in the radio end of the spectrum. The source of the X-ray emissions is thought to be ultrahot material in the innermost regions of the accretion disk, which is just about to fall into the black hole. Optical and ultraviolet emissions likely arise from material further out in the disk, which will eventually be pulled into the black hole.
However, what gives rise to radio emissions during a tidal disruption flare has been up for debate.
"We know that the radio waves are coming from really energetic electrons that are moving in a magnetic field -- that is a well-established process," Pasham says. "The debate has been, where are these really energetic electrons coming from?"
Some scientists propose that, in the moments after the stellar explosion, a shockwave propagates outward and energizes the plasma particles in the surrounding medium, in a process that in turn emits radio waves. In such a scenario, the pattern of emitted radio waves would look radically different from the pattern of X-rays produced from infalling stellar debris.
"What we found basically challenges this paradigm," Pasham says.
A shifting pattern
Pasham and van Velzen looked through data recorded from a tidal disruption flare discovered in 2014 by the global telescope network ASASSN (All-sky Automated Survey for Supernovae). Soon after the initial discovery, multiple electromagnetic telescopes focused on the event, which astronomers coined ASASSN-14li. Pasham and van Velzen perused radio data from three telescopes of the event over 180 days.
The researchers looked through the compiled radio data and discovered a clear resemblance to patterns they had previously observed in X-ray data from the same event. When they fit the radio data over the X-ray data, and shifted the two around to compare their similarities, they found the datasets were most similar, with a 90 percent resemblance, when shifted by 13 days. That is, the same fluctuations in the X-ray spectrum appeared 13 days later in the radio band.
"The only way that coupling can happen is if there is a physical process that is somehow connecting the X-ray-producing accretion flow with the radio-producing region," Pasham says.
From this same data, Pasham and van Velzen calculated the size of the X-ray-emitting region to be about 25 times the size of the sun, while the radio-emitting region was about 400,000 times the solar radius.
"It's not a coincidence that this is happening," Pasham says. "Clearly there's a causal connection between this small region producing X-rays, and this big region producing radio waves."
The team proposes that the radio waves were produced by a jet of high-energy particles that began to stream out from the black hole shortly after the black hole began absorbing material from the exploded star. Because the region of the jet where these radio waves first formed was incredibly dense (tightly packed with electrons), a majority of the radio waves were immediately absorbed by other electrons.
It was only when electrons traveled downstream of the jet that the radio waves could escape -- producing the signal that the researchers eventually detected. Thus, they say, the strength of the jet must be controlled by the accretion rate, or the speed at which the black hole is consuming X-ray-emitting stellar debris. Ultimately, the results may help scientists better characterize the physics of jet behavior -- an essential ingredient in modeling the evolution of galaxies. It's thought that galaxies grow by producing new stars, a process that requires very cold temperatures. When a black hole emits a jet of particles, it essentially heats up the surrounding galaxy, putting a temporary stop on stellar production. Pasham says the team's new insights into jet production and black hole accretion may help to simplify models of galaxy evolution.
Read more at Science Daily
This New Detector Technology Aims to ‘Scintillate’ Elusive Dark Matter Particles
There are several different dark matter detector experiments underway, and most of them are cryogenic detectors that operate underground at extremely low temperatures. Theoretically, they would detect the heat produced when a dark matter particle collides with materials in the detector. But so far all experiments have come up empty.
Researchers at the US Department of Energy’s Lawrence Berkeley National Laboratory, however, have proposed building a new dark matter experiment using an ultrasensitive detector that incorporates crystals of gallium arsenide (GaAs), along with silicon and boron. This combination of elements would cause the crystals to scintillate, or light up, during particle interactions.
“The dark matter interactions would be detected as infrared photons (light) collected by external transition-edge sensors (TES) rather than phonons (heat),” said the lab’s Stephen Derenzo in an email to Seeker. He is the lead author of a study published this week in the Journal of Applied Physics.
But the proposed new detector would be able to look for much smaller than WIMPs.
“SuperCDMS is sensitive to nuclear recoils from dark matter in the energy range above the mass of the proton,” Derenzon said. “Gallium arsenide is sensitive to electron recoils in the range below the mass of the proton. These approaches are complementary since there may be dark matter particles of different masses.”
While astronomers and physicist don’t know what dark matter is, they can measure the effect of its gravity on stars and galaxies. In the 1930s, astronomer Fritz Zwicky first noticed that the motion of galaxies he was studying in the Coma cluster couldn’t be accounted for by the gravity from visible matter of stars, gas, and dust. Then in the 1970s, Vera Rubin and her colleagues determined there wasn't enough "normal" mass present in the galaxies they were studying to explain their rate of rotation. This presented a problem, as either our understanding of gravity was flawed, or there was about five times more mass in the galaxies than astronomers could see.
Normal matter accounts for only about 5 percent of matter in the universe, whereas dark matter constitutes more than 25 percent. The remaining 70 percent is known as dark energy, which, like dark matter, has not been directly observed by researchers.
Astronomers are convinced, however, that dark matter — as well as dark energy — exists and have tried to observe them in several ways, including in underground laboratories and supercolliders such as CERN in Switzerland.
To build any type of dark matter detector, researchers have had to make some assumptions about the nature of the dark matter. Based on a number of theoretical studies, WIMPs were thought to be the likely main constituent of dark matter.
Therefore, most detectors have been built to detect particles the size of WIMPs, thought to weigh more than 100 times the mass of a proton.
Derenzo and his colleague wrote that despite overwhelming evidence for dark matter, recent large-scale experiments designed to detect nuclear recoils from dark matter particles with masses of WIMPs have not yet seen a definitive signal. This has motivated designs for experiments that search for dark matter particles in a different size range.
The GaAs crystal detector would operate near absolute zero, or nearly minus 460 degrees Fahrenheit. This new design iS the first time gallium arsenide would be used as a cryogenic scintillation detector. The detector will be combined with a cryogenic photodetector, which can detect light at very low temperatures. Derenzo said the new detector could be “a workhorse useful in the search for dark matter in a largely unexplored mass range.”
Work toward constructing the detector is ongoing, Derenzo said.
Read more at Seeker
A New Batch of Neanderthal Genome Provides Insights Into Their Complex History
Since Neanderthals have affected everything from modern hair and eye color to cardiovascular traits, information about them is important to understanding our species. An obstacle has been obtaining Neanderthal remains that are preserved well enough to allow for analysis of large portions of their genomes.
An international team of researchers led by scientists from the Max Planck Institute for Evolutionary Anthropology has just overcome the problem, allowing for whole genome sequencing of five Neanderthals who lived 39,000–47,000 years ago. The findings, reported in the journal Nature, provide important insights into Neanderthal history before and after they encountered anatomically modern humans.
"The addition of the genome sequences of these five Neanderthals presented in this study doubles the number of genomes available, and we hope that this will provide a useful resource for others interested in studying human history," lead author Mateja Hajdinjak of the Max Planck Institute for Evolutionary Anthropology told Seeker.
Co-senior author Janet Kelso explained that one of the major factors that influences the ability to obtain good, Neanderthal sequences is contamination with microbial and present-day human DNA. Reducing contamination is therefore important in the study of any early-hominid remains. A number of methods to accomplish this have been developed over the last few years.
She and her colleagues took small bone and tooth samples from the remains and ground them into a fine powder. The powder was then treated with a mild, hypochlorite solution that preferentially removed the contaminating DNA.
The remaining genetic material was then sequenced and compared with the other Neanderthal genomes as well as related data for Denisovans and two anatomically modern humans whose lifespans and locations overlapped with those of the studied Neanderthals.
Since there is currently no genetic data available for Homo floresiensis, aka the "hobbit" human from the Indonesian island of Flores, it is not possible to determine how this group was related to Neanderthals and Denisovans.
One of the prior sequenced Neanderthals lived in Siberia. The researchers determined that the five newly analyzed Neanderthals shared a common ancestor with the Siberian individual 150,000 years ago before they spread out into separate populations.
The scientists further determined that the relatedness of the five newly analyzed Neanderthals correlated with their geographic proximity. This is also the case for today's humans, assuming that they have not left their native homeland. The Neanderthals from Belgium, for example, were more closely related to the one from France versus the one from Croatia, which is farther away.
"All the Neanderthals we have sequenced to date share a common ancestor with Denisovans, and our estimates in this paper seem to agree with previous studies that estimated the separation of Neanderthal and Denisovans to have occurred approximately 400,000 years ago," co-senior author Svante Pääbo told Seeker.
He added that there is evidence for hominids living in Spain at around this time, so it is possible that the last common ancestor of Neanderthals and Denisovans came from this region as well. The species identity of the common ancestor remains a mystery for now.
It is also unclear what led to Neanderthals splitting from the Siberian population 150,000 years ago. One possibility is that they were tracking prey.
A study recently published in the Journal of Archaeological Science reports the remains of bears associated with Neanderthals.
"Cave bear, brown bear, and Neanderthals were potential competitors for environmental shelters and food," lead author Matteo Romandini of the University of Bologna and his team wrote.
The bear remains, found in Rio Secco Cave and Fumane Cave in northeast Italy, retain "clearly preserved traces of human modification such as cut and percussion marks, which enable a reconstruction of the main steps of fur recovery and the butchering process."
The evidence then "suggests that bears had a strategic role in the nomadic economy of Neanderthal hunting groups," Romandini and his colleagues conclude.
Climate would have been another factor affecting both the Neanderthals and their prey.
Hajdinjak and her team determined that the five Neanderthals shared a common ancestor with a Neanderthal from Croatia 70,000 years ago. The researchers believe that there was a population turnover toward the end of Neanderthal history that occurred either in the Caucasus or throughout Europe. The timing coincides with pronounced climatic fluctuations between 60,000–24,000 years ago.
Hajdinjak said that the weather extremes "might have forced Neanderthals into refuge, which was followed by recolonization. “Alternatively,” she said, “there may have been regional Neanderthal extinctions and migration-recolonization of these areas."
Around 150 years ago, Neanderthals and Homo sapiens were designated as two distinct species. This was largely based on differences in skeletal anatomy and material cultures.
"However," Pääbo said, "genetics has now allowed us to show that Neanderthals and Denisovans interbred with early modern humans — and with each other — and had at least some fertile offspring. Therefore, by some definitions, modern humans, Neanderthals, and Denisovans are not distinct species."
He continued, "What is clear is that modern humans, Neanderthals, and Denisovans are three genetically distinct groups of humans."
Read more at Seeker
Mar 21, 2018
A star disturbed the comets of the solar system 70,000 years ago
About 70,000 years ago, a small reddish star approached our solar system and gravitationally disturbed comets and asteroids. Astronomers from the Complutense University of Madrid and the University of Cambridge have verified that the movement of some of these objects is still marked by that stellar encounter.
At a time when modern humans were beginning to leave Africa and the Neanderthals were living on our planet, Scholz's star -- named after the German astronomer who discovered it -- approached less than a light-year from the Sun. Nowadays it is almost 20 light-years away, but 70,000 years ago it entered the Oort cloud, a reservoir of trans-Neptunian objects located at the confines of the solar system.
This discovery was made public in 2015 by a team of astronomers led by Professor Eric Mamajek of the University of Rochester (USA). The details of that stellar flyby, the closest documented so far, were presented in The Astrophysical Journal Letters.
Now two astronomers from the Complutense University of Madrid, the brothers Carlos and Raúl de la Fuente Marcos, together with the researcher Sverre J. Aarseth of the University of Cambridge (United Kingdom), have analyzed for the first time the nearly 340 objects of the solar system with hyperbolic orbits (very open V-shaped, not the typical elliptical), and in doing so they have detected that the trajectory of some of them is influenced by the passage of Scholz´s star.
"Using numerical simulations we have calculated the radiants or positions in the sky from which all these hyperbolic objects seem to come," explains Carlos de la Fuente Marcos, who together with the other coauthors publishes the results in the MNRAS Letters journal.
"In principle," he adds, "one would expect those positions to be evenly distributed in the sky, particularly if these objects come from the Oort cloud; however, what we find is very different: a statistically significant accumulation of radiants. The pronounced over-density appears projected in the direction of the constellation of Gemini, which fits the close encounter with Scholz´s star."
The moment in which this star passed close to us and its position during prehistory coincide with the data of the new investigation and in those of Mamajek and his team. "It could be a coincidence, but it is unlikely that both location and time are compatible," says De la Fuente Marcos, who points out that their simulations suggest that Scholz´s star approached even more than the 0.6 light-years pointed out in the 2015 study as the lower limit.
The close fly-by of this star 70,000 years ago did not disturb all the hyperbolic objects of the solar system, only those that were closest to it at that time. "For example, the radiant of the famous interstellar asteroid` Oumuamua is in the constellation of Lyra (the Harp), very far from Gemini, therefore it is not part of the detected over-density, "says De la Fuente Marcos. He is confident that new studies and observations will confirm the idea that a star passed close to us in a relatively recent period.
Read more at Science Daily
At a time when modern humans were beginning to leave Africa and the Neanderthals were living on our planet, Scholz's star -- named after the German astronomer who discovered it -- approached less than a light-year from the Sun. Nowadays it is almost 20 light-years away, but 70,000 years ago it entered the Oort cloud, a reservoir of trans-Neptunian objects located at the confines of the solar system.
This discovery was made public in 2015 by a team of astronomers led by Professor Eric Mamajek of the University of Rochester (USA). The details of that stellar flyby, the closest documented so far, were presented in The Astrophysical Journal Letters.
Now two astronomers from the Complutense University of Madrid, the brothers Carlos and Raúl de la Fuente Marcos, together with the researcher Sverre J. Aarseth of the University of Cambridge (United Kingdom), have analyzed for the first time the nearly 340 objects of the solar system with hyperbolic orbits (very open V-shaped, not the typical elliptical), and in doing so they have detected that the trajectory of some of them is influenced by the passage of Scholz´s star.
"Using numerical simulations we have calculated the radiants or positions in the sky from which all these hyperbolic objects seem to come," explains Carlos de la Fuente Marcos, who together with the other coauthors publishes the results in the MNRAS Letters journal.
"In principle," he adds, "one would expect those positions to be evenly distributed in the sky, particularly if these objects come from the Oort cloud; however, what we find is very different: a statistically significant accumulation of radiants. The pronounced over-density appears projected in the direction of the constellation of Gemini, which fits the close encounter with Scholz´s star."
The moment in which this star passed close to us and its position during prehistory coincide with the data of the new investigation and in those of Mamajek and his team. "It could be a coincidence, but it is unlikely that both location and time are compatible," says De la Fuente Marcos, who points out that their simulations suggest that Scholz´s star approached even more than the 0.6 light-years pointed out in the 2015 study as the lower limit.
The close fly-by of this star 70,000 years ago did not disturb all the hyperbolic objects of the solar system, only those that were closest to it at that time. "For example, the radiant of the famous interstellar asteroid` Oumuamua is in the constellation of Lyra (the Harp), very far from Gemini, therefore it is not part of the detected over-density, "says De la Fuente Marcos. He is confident that new studies and observations will confirm the idea that a star passed close to us in a relatively recent period.
Read more at Science Daily
New genetic research shows extent of cross-breeding between wild wolves and domestic dogs
Wolf in the forest. |
The international study showed that around 60 per cent of Eurasian grey wolf genomes carried small blocks of the DNA of domestic dogs, suggesting that wolves cross-bred with dogs in past generations.
The results suggest that wolf-dog hybridisation has been geographically widespread in Europe and Asia and has been occurring for centuries. The phenomenon is seen less frequently in wild wolf populations of North America.
Researchers examined DNA data from grey wolves -- the ancestors of the domestic dog -- to determine how much their gene pool was diluted with the DNA of domestic canines, and how widespread the process of hybridisation is.
Despite the evidence of hybridisation among Eurasian grey wolves, the wolf populations have remained genetically distinct from dogs, suggesting that such cross-breeding does not diminish distinctiveness of the wolf gene pool if it occurs at low levels.
The results could have important conservation implications for the grey wolf, which is a keystone species -- meaning it is vital to the natural balance of the habitat it occupies. The legal status of hybrids is still uncertain and unregulated.
The study was led by researchers from the University of Lincoln, UK, the Italian National Institute for Environmental Protection and Research and the University of California, Los Angeles.
Dr Malgorzata Pilot, from the School of Life Sciences at the University of Lincoln, said: "The fact that wild wolves can cross-breed with dogs is well-documented, but little was previously known about how widespread this phenomenon has been and how it has affected the genetic composition of wild wolf populations.
"We found that while hybridisation has not compromised the genetic distinctiveness of wolf populations, a large number of wild wolves in Eurasia carry a small proportion of gene variants derived from dogs, leading to the ambiguity of how we define genetically 'pure wolves'.
"Our research highlighted that some individual wolves which had been identified as 'pure wolves' according to their physical characteristics were actually shown to be of mixed ancestry. On the other hand, two Italian wolves with an unusual, black coat colour did not show any genetic signatures of hybridisation, except for carrying a dog-derived variant of a gene linked to dark colouration. This suggests that the definition of genetically 'pure' wolves can be ambiguous and identifying admixed individuals can be difficult, implying that management strategies based on removal of suspected hybrids from wolf populations may be inefficient.
"Instead, our study has highlighted a need to reduce the factors which can cause hybridisation, such as abundance of free-ranging dogs, small wolf population sizes, and unregulated hunting."
Studying a specific type of genetic variation in the DNA sequences of wolves and domestic dogs -- called Single Nucleotide Polymorphisms (SNPs) -- the scientists identified the transfer of dog gene variants into wolf genomes.
Read more at Science Daily
Dinosaur frills and horns did not evolve for species recognition
Triceratops rendering |
It has been suggested that different species that live in the same location may evolve features in order to distinguish one another to help avoid problems such as hybridisation, where two individuals of different species produce infertile or unfit offspring.
To test this hypothesis the researchers examined patterns of diversity in the ornamentation of 46 species of ceratopsians, the horned dinosaurs, but found no difference between species that lived together and those that lived separately.
A previous research paper from Queen Mary found that the frill in one ceratopsian species, Protoceratops, may have evolved under sexual selection. These new findings appear to add evidence to this across the entire group.
The researchers also found evidence that ornamental traits seemed to evolve at a much faster rate than other traits. As these structures are costly to grow and maintain, this finding similarly points to a strong selective pressure on these traits.
The study was published in Proceedings of the Royal Society B.
Andrew Knapp, PhD candidate from the School of Biological and Chemical Sciences and lead author of the study, said: "This resolves a long-standing and hitherto untested hypothesis concerning the origin and function of ornamental traits in ceratopsian dinosaurs. Many general discussions of ceratopsian ornaments in museum signage and popular literature often include examples of what they might have been for, but these tend to be rather speculative.
"We have shown that species recognition, one of the commonest explanations, is unlikely to be responsible for the diversity or origin of ornamentation in this group."
The researchers believe the implications extend beyond the scope of ceratopsians and have consequences for the study of evolutionary theory over vast stretches of time.
The fossil record offers an opportunity to see evolution in action over much longer time periods than can be achieved with living organisms, but it is difficult to assign explanations to unusual features such as ceratopsian ornaments with the limited information that fossils provide.
The researchers have now largely ruled out one explanation, species recognition, and provided some evidence for another, sexual selection.
Mr Knapp said: "If sexual selection is indeed the driver of ornament evolution in ceratopsians, as we are increasingly confident it is, demonstrating it through different lines of evidence can provide a crucial window into tracing its effects over potentially huge timescales."
He added: "Modern computer models have suggested that sexual selection can promote rapid speciation, adaptation, and extinction. In our world of increasing pressure on the natural world, these predictions may have important consequences for conservation and the fate of living things everywhere."
To test these predictions the researchers hope to look at changes in the fossil record and gather further evidence to first identify sexual selection in a fossil group.
Read more at Science Daily
TRAPPIST-1 planets provide clues to the nature of habitable worlds
All seven planets discovered in orbit around the red dwarf star TRAPPIST-1 could easily fit inside the orbit of Mercury, the innermost planet of our solar system. |
Among planetary systems, TRAPPIST-1 is of particular interest because seven planets have been detected orbiting this star, a larger number of planets than have been than detected in any other exoplanetary system. In addition, all of the TRAPPIST-1 planets are Earth-sized and terrestrial, making them an ideal focus of study for planet formation and potential habitability.
ASU scientists Cayman Unterborn, Steven Desch, and Alejandro Lorenzo of the School of Earth and Space Exploration, with Natalie Hinkel of Vanderbilt University, have been studying these planets for habitability, specifically related to water composition. Their findings have been recently published in Nature Astronomy.
Water on the TRAPPIST-1 Planets
The TRAPPIST-1 planets are curiously light. From their measured mass and volume, all of this system's planets are less dense than rock. On many other, similarly low-density worlds, it is thought that this less-dense component consists of atmospheric gasses.
"But the TRAPPIST-1 planets are too small in mass to hold onto enough gas to make up the density deficit," explains geoscientist Unterborn. "Even if they were able to hold onto the gas, the amount needed to make up the density deficit would make the planet much puffier than we see."
So scientists studying this planetary system have determined that the low-density component must be something else that is abundant: water. This has been predicted before, and possibly even seen on larger planets like GJ1214b, so the interdisciplinary ASU-Vanderbilt team, composed of geoscientists and astrophysicists, set out to determine just how much water could be present on these Earth-sized planets and how and where the planets may have formed.
Calculating water amounts on TRAPPIST-1 planets
To determine the composition of the TRAPPIST-1 planets, the team used a unique software package, developed by Unterborn and Lorenzo, that uses state-of-the-art mineral physics calculators. The software, called ExoPlex, allowed the team to combine all of the available information about the TRAPPIST-1 system, including the chemical makeup of the star, rather than being limited to just the mass and radius of individual planets.
Much of the data used by the team to determine composition was collected from a dataset called the Hypatia Catalog, developed by contributing author Hinkel. This catalog merges data on the stellar abundances of stars near to our Sun, from over 150 literature sources, into a massive repository.
What they found through their analyses was that the relatively "dry" inner planets (labeled "b" and "c" on this image) were consistent with having less than 15 percent water by mass (for comparison, Earth is 0.02 percent water by mass). The outer planets (labeled "f" and "g" on this image) were consistent with having more than 50 percent water by mass. This equates to the water of hundreds of Earth-oceans. The masses of the TRAPPIST-1 planets continue to be refined, so these proportions must be considered estimates for now, but the general trends seem clear.
"What we are seeing for the first time are Earth-sized planets that have a lot of water or ice on them," says ASU astrophysicist and contributing author, Steven Desch.
But the researchers also found that the ice-rich TRAPPIST-1 planets are much closer to their host star than the ice line. The "ice line" in any solar system, including TRAPPIST-1's, is the distance from the star beyond which water exists as ice and can be accreted into a planet; inside the ice line water exists as vapor and will not be accreted. Through their analyses, the team determined that the TRAPPIST-1 planets must have formed much farther from their star, beyond the ice line, and migrated in to their current orbits close to the host star.
There are many clues that planets in this system and others have undergone substantial inward migration, but this study is the first to use composition to bolster the case for migration. What's more, knowing which planets formed inside and outside of the ice line allowed the team to quantify for the first time how much migration took place.
Because stars like TRAPPIST-1 are brightest right after they form and gradually dim thereafter, the ice line tends to move in over time, like the boundary between dry ground and snow-covered ground around a dying campfire on a snowy night. The exact distances the planets migrated inward depends on when they formed. "The earlier the planets formed," says Desch, "the further away from the star they needed to have formed to have so much ice." But for reasonable assumptions about how long planets take to form, the TRAPPIST-1 planets must have migrated inward from at least twice as far away as they are now.
Too much of a good thing
Interestingly, while we think of water as vital for life, the TRAPPIST-1 planets may have too much water to support life.
"We typically think having liquid water on a planet as a way to start life, since life, as we know it on Earth, is composed mostly of water and requires it to live," explains Hinkel. "However, a planet that is a water world, or one that doesn't have any surface above the water, does not have the important geochemical or elemental cycles that are absolutely necessary for life."
Ultimately, this means that while M-dwarf stars, like TRAPPIST-1, are the most common stars in the universe (and while it's likely that there are planets orbiting these stars), the huge amount of water they are likely to have makes them unfavorable for life to exist, especially enough life to create a detectable signal in the atmosphere that can be observed. "It's a classic scenario of 'too much of a good thing,'" says Hinkel.
Read more at Science Daily
Mar 20, 2018
Mars' oceans formed early, possibly aided by massive volcanic eruptions
The proposal by geophysicists at the University of California, Berkeley, links the existence of oceans early in Mars history to the rise of the solar system's largest volcanic system, Tharsis, and highlights the key role played by global warming in allowing liquid water to exist on Mars.
"Volcanoes may be important in creating the conditions for Mars to be wet," said Michael Manga, a UC Berkeley professor of earth and planetary science and senior author of a paper appearing in Nature this week and posted online March 19.
Those claiming that Mars never had oceans of liquid water often point to the fact that estimates of the size of the oceans don't jibe with estimates of how much water could be hidden today as permafrost underground and how much could have escaped into space. These are the main options, given that the polar ice caps don't contain enough water to fill an ocean.
The new model proposes that the oceans formed before or at the same time as Mars' largest volcanic feature, Tharsis, instead of after Tharsis formed 3.7 billion years ago. Because Tharsis was smaller at that time, it did not distort the planet as much as it did later, in particular the plains that cover most of the northern hemisphere and are the presumed ancient seabed. The absence of crustal deformation from Tharsis means the seas would have been shallower, holding about half the water of earlier estimates.
"The assumption was that Tharsis formed quickly and early, rather than gradually, and that the oceans came later," Manga said. "We're saying that the oceans predate and accompany the lava outpourings that made Tharsis."
It's likely, he added, that Tharsis spewed gases into the atmosphere that created a global warming or greenhouse effect that allowed liquid water to exist on the planet, and also that volcanic eruptions created channels that allowed underground water to reach the surface and fill the northern plains.
Following the shorelines
The model also counters another argument against oceans: that the proposed shorelines are very irregular, varying in height by as much as a kilometer, when they should be level, like shorelines on Earth.
This irregularity could be explained if the first ocean, called Arabia, started forming about 4 billion years ago and existed, if intermittently, during as much as the first 20 percent of Tharsis's growth. The growing volcano would have depressed the land and deformed the shoreline over time, which could explain the irregular heights of the Arabia shoreline.
Similarly, the irregular shoreline of a subsequent ocean, called Deuteronilus, could be explained if it formed during the last 17 percent of Tharsis's growth, about 3.6 billion years ago.
"These shorelines could have been emplaced by a large body of liquid water that existed before and during the emplacement of Tharsis, instead of afterwards," said first author Robert Citron, a UC Berkeley graduate student. Citron will present a paper about the new analysis on March 20 at the annual Lunar and Planetary Science conference in Texas.
Tharsis, now a 5,000-kilometer-wide eruptive complex, contains some of the biggest volcanoes in the solar system and dominates the topography of Mars. Earth, twice the diameter and 10 times more massive than Mars, has no equivalent dominating feature. Tharsis's bulk creates a bulge on the opposite side of the planet and a depression halfway between. This explains why estimates of the volume of water the northern plains could hold based on today's topography are twice what the new study estimates based on the topography 4 billion years ago.
New hypothesis supplants old
Manga, who models the internal heat flow of Mars, such as the rising plumes of molten rock that erupt into volcanoes at the surface, tried to explain the irregular shorelines of the plains of Mars 11 years ago with another theory. He and former graduate student Taylor Perron suggested that Tharsis, which was then thought to have originated at far northern latitudes, was so massive that it caused the spin axis of Mars to move several thousand miles south, throwing off the shorelines.
Since then, however, others have shown that Tharsis originated only about 20 degrees above the equator, nixing that theory. But Manga and Citron came up with another idea, that the shorelines could have been etched as Tharsis was growing, not afterward. The new theory also can account for the cutting of valley networks by flowing water at around the same time.
"This is a hypothesis," Manga emphasized. "But scientists can do more precise dating of Tharsis and the shorelines to see if it holds up."
NASA's next Mars lander, the InSight mission (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport), could help answer the question. Scheduled for launch in May, it will place a seismometer on the surface to probe the interior and perhaps find frozen remnants of that ancient ocean, or even liquid water.
Read more at Science Daily
Fish accounted for surprisingly large part of the Stone Age diet
Sturgeon fish. |
Osteologists Adam Boethius and Torbjörn Ahlström have studied the importance of various protein sources in the human diet across three millennia, from around 10 500 to 7 500 years ago. This was done by combining chemical analyses of human bones from over 80 individuals, whose skeletons are the oldest discovered in Scandinavia, with osteological analyses of animal bone material.
The study is part of a doctoral thesis that has used various methods to examine the significance of fishing for the people who settled in southern Scandinavia during the millenniums after the ice from the last ice age had melted away.
"At the Norje Sunnansund settlement, outside Sölvesborg in Sweden, you can see that just over half of the protein intake has come from fish, ten per cent from seals, and around 37 per cent from land mammals, such as wild boar and red deer, and scarcely three per cent from plants such as mushrooms, berries and nuts," says Adam Boethius. "On the island of Gotland, which did not have any land mammals apart from hares, the percentage of fish in total protein consumption was even higher at just under 60 per cent. Here, seals have replaced the land mammals and account for almost 40 per cent of the protein intake, whereas hares and vegetables account for a negligible proportion," he continues.
The study shows that fish was also a highly significant protein source on the Swedish west coast, but it seems that seals and dolphins were more important for the first pioneer settlers, and that after an initial focus on hunting aquatic mammals, fishing increased as a protein source.
Previously, the researchers believed that humans at that time had been far more involved in mobile groups of big-game hunters whose main protein intake thus should have come from herbivores such as red deer, aurochs and elk, and consequently the role of fishing was not recognised.
"The dominance of fishing is a discovery that has an enormous significance for our understanding of how people lived. Fishing is relatively stationary compared to the hunting of land mammals, which provides clear indications that settlements appeared in Scandinavia much earlier than researchers previously believed," says Adam Boethius.
The fact that researchers have often missed the significance of fishing is probably because they have not actively looked for the traces that exist. Fish bones are much smaller and more brittle than the bones of mammals, and are not as well preserved. In an excavation, fish bones are almost impossible to detect while in the ground and fine-mesh sieves must be used to find them.
The researchers found that fishing was surprisingly dominant at all the sites investigated. In the study, the individuals were divided up into those who lived in marine environments and those who lived in freshwater environments. In freshwater environments the protein intake is dominated by different types of carp fish species, perch, pike and burbot. Cod dominates in marine environments, but herring, saithe, haddock, spiny dogfish and plaice are also important species. On the other hand, migratory fish, such as eel and salmon, did not account for a large proportion of food intake.
"What's interesting is that the values from the people in the various groups do not overlap. This indicates that the groups had limited mobility and mostly lived on a local diet," says Adam Boethius.
The results also show that people become more dependent on fishing over time and that certain areas were probably more densely populated than previously thought.
"Even though fish can be caught in most lakes, there are certain places that are especially favourable. It is at these sites that the people begin to settle, creating their own territory. This probably entailed violent clashes between different groups of people, which is often reflected in the various violence-related injuries to the skeletons we find in archaeological excavations."
"The increasing importance of fish means that the land was divided up. For groups that continued to be mobile this meant the creation of no-go zones, that these groups were forced to skirt around in order to find food. In the long term this leads to increasing "costs" for foraging strategies and an increasing tendency to settle is to be expected, as it becomes the best alternative," concludes Adam Boethius.
More on the scientific model behind the findings:
Stable isotopes of the elements carbon and nitrogen are present in all parts of the human body, including the skeleton, and reflect a person's diet. By analysing these isotope signals for possible food sources and relating them to the values shown in human bone material, it is possible to deduce the diet the person in question has lived on.
Read more at Science Daily
Discovery of sophisticated 115,000-year-old bone tools in China
White bracket indicates the area where impact scars are present. |
Marks found on the excavated bone fragments show that humans living in China in the early Late Pleistocene were already familiar with the mechanical properties of bone and knew how to use them to make tools out of carved stone. These humans were neither Neanderthals nor sapiens.
This major find, in which Luc Doyon of UdeM's Department of Anthropology participated, has just been published in the scientific journal PLOS ONE.
"These artefacts represent the first instance of the use of bone as raw material to modify stone tools found at an East Asian early Late Pleistocene site,"said Doyon. "They've been found in the rest of Eurasia, Africa and the Levante, so their discovery in China is an opportunity for us to compare these artifacts on a global scale.
Until now, the oldest bone tools discovered in China dated back 35,000 years and consisted of assegai (spear) points. "Prior to this discovery, research into the technical behaviour of humans inhabiting China during this period was almost solely based on the study of tools carved from stone," said Doyon.
Three types of hammers
The seven bone fragments analyzed by Luc Doyon and his colleagues were excavated between 2005 and 2015 at the Lingjing site in central China's Henan province. The artifacts were found buried at a depth of roughly 10 metres. At the time, the site was being actively used as a water spring for animals. Prehistoric humans likely used these water supply points for killing and butchering their animal prey.
The bone fragments were dated using optically stimulated luminescence (OSL), a method widely used by geologists for dating the sediment layers in which tools are found.
Doyon explained that the researchers identified three types of bone retouchers, known as soft hammers, that were used to modify stone (or lithic) tools. The first type was weathered limb bone fragments, mainly from cervid metapodials, marginally shaped by retouching and intensively used on a single area. The second type was long limb bone flakes resulting from the dismemberment of large mammals, used for quick retouching or resharpening of stone tools. And the third type was a single specimen of an antler of an axis deer that, close to its tip, shows impact scars produced by percussing various lithic blanks.
The researchers have not yet determined which hominid species the users of these prehistoric tools belonged to, although they do know that they lived during the same period as Neanderthals and Homo sapiens. "The Lingjing site yielded two incomplete human skulls that suggest interbreeding between this species and Neanderthals," Doyon said. "But this is a hypothesis that remains to be confirmed through further investigation, such as paleogenetic studies."
More discoveries to come
The analyses that led to the identification of the bone tools were conducted by Doyon and his colleagues Francesco d'Errico (Université de Bordeaux), Li Zhanyang (Shandong University) and Li Hao (Chinese Academy of Sciences), at the Henan Provincial Institute for Cultural Relics and Archaeology.
Doyon participated in the project while working on his doctoral thesis on hunting weapons manufactured from osseous materials by the first Homo sapiens inhabiting Europe between 42,000 and 30,000 years ago. Having earned his PhD in anthropology from Université de Montréal in cotutelle with Université de Bordeaux (PhD in prehistory) in September 2017, Doyon will now pursue a postdoctoral fellowship at Shandong University to conduct further analyses on the bone tools discovered at the Lingjing site.
Read more at Science Daily
Subscribe to:
Posts (Atom)