After the discovery, planetary scientist Margaret Pan at the University of Toronto was curious as to how those rings came to be. Recent research she led hints at a solution. Using mathematics and observations of Chariklo, her team suggested a new way the rings could have been created for the asteroid and other space rocks (dubbed Centaurs) in its neighborhood.
Their work suggests that as Chariklo moved out of the Kuiper Belt of icy objects (beyond Neptune) towards its current orbit, the sudden heating would have caused outgassing of carbon monoxide or nitrogen gas. This process would have lifted dust particles off the surface, eventually forming the rings. This theory competes with another idea previously brought out in the literature, which is that Chariklo picked up a small moon while in the Kuiper Belt, a moon that eventually broke apart into a ring when Chariklo passed close to Neptune. Pan said the latter scenario is likely rare; only some Centaurs could get rings that way.
“(Our) scenario predicts that all 100 km-class (62-mile) Centaurs should have some kind of orbiting dusty material. We’re eager for future Centaur observations to help distinguish between these formation pathways,” Pan wrote in an e-mail to Discovery News.
Rings are a rare phenomenon in our solar system. Saturn (pictured) has a spectacular set along with Jupiter, Uranus, Neptune and Chariklo. |
Uranus and its rings, based on Hubble observations performed in 2003. Chariklo’s rings appear to be the most similar to those of Uranus. |
Pan’s team suggests that the ring is not quite circular (elliptical). The particles don’t form into a circle due to the individual gravitational interactions between particles. The research implies that for this to happen, you would need to have enough material to create a 1-km (0.62-mile) sized ice ball. A typical particle would also have to be a few meters in size.
When comparing Chariklo’s rings to other ringed bodies in the solar system, it appears most similar to Uranus despite its diminutive size.
“The geometry of Chariklo’s rings, which are fairly dense and narrow, is most like that of the Uranian rings. Interestingly, some of the Uranian rings are also noticeably elliptical, and studies of the Uranian system inspired our treatment of Chariklo’s rings,” Pan wrote.
Read more at Discovery News
No comments:
Post a Comment