A team of physicists at the University of Toronto (U of T) have taken a step toward making the essential building block of quantum computers out of pure light. Their advance, described in a paper published this week in Nature Physics, has to do with a specific part of computer circuitry known as a "logic gate."
Logic gates perform operations on input data to create new outputs. In classical computers, logic gates take the form of diodes or transistors. But quantum computer components are made from individual atoms and subatomic particles. Information processing happens when the particles interact with one another according to the strange laws of quantum physics.
Light particles -- known as "photons" -- have many advantages in quantum computing, but it is notoriously difficult to get them to interact with one another in useful ways. This experiment demonstrates how to create such interactions.
"We've seen the effect of a single particle of light on another optical beam," said Canadian Institute for Advanced Research (CIFAR) Senior Fellow Aephraim Steinberg, one of the paper's authors and a researcher at U of T's Centre for Quantum Information & Quantum Computing. "Normally light beams pass through each other with no effect at all. To build technologies like optical quantum computers, you want your beams to talk to one another. That's never been done before using a single photon."
The interaction was a two-step process. The researchers shot a single photon at rubidium atoms that they had cooled to a millionth of a degree above absolute zero. The photons became "entangled" with the atoms, which affected the way the rubidium interacted with a separate optical beam. The photon changes the atoms' refractive index, which caused a tiny but measurable "phase shift" in the beam.
Read more at Science Daily
No comments:
Post a Comment