In July 2015, we will see some of the most monumental photos of spaceflight history. NASA’s New Horizons probe will blast through the Kuiper belt, imaging the region beyond Neptune’s orbit and gathering an intimate view of the Pluto-Charon system. But until that fateful flyby, we will have to make do with fuzzy observations of the distant dwarf planet, although a surprising amount of detail can still be gathered by powerful telescopes and rendered by sophisticated models.
Enter the Scientific Exoplanets Renderer (SER) as used by Abel Méndez, planetary scientist and director of the Planetary Habitability Laboratory at the University of Puerto Rico, to create a very cool view of the small, yet complex world.
SER is more commonly used to generate photo-realistic images of exoplanets, renderings of which can be found in the Visible Paleo-Earth project and the Habitable Exoplanets Catalog. By gathering as much observational data about planets orbiting other stars as possible — such as data from the complex light-curves of transiting exoplanets — and feeding the SER, artistic renderings based on real observations can be generated. The more data available, the more precise the model.
So, looking a little closer to home, Méndez applied SER to Pluto. By feeding the algorithm with albedo data from the Hubble Space Telescope, he generated a “basic representation” of Pluto. For now, the model only uses albedo maps from Hubble (i.e. the brightness variations as mapped across Pluto’s surface), but Méndez plans to “produce more creative” versions, adding more detail to the apparent surface features.
“It will be fun to compare our progress, starting from our first image, until the final close-up pictures of Pluto on July 2015,” writes Méndez.
Interestingly, Méndez applied the same color palette as used to color observations of Triton, Neptune’s strange moon. Triton has a retrograde orbit around the ice giant (i.e. it orbits in the other direction to all the other 13 known Neptunian satellites) and has a very different composition leading planetary scientists to theorize that it is actually a captured Kuiper belt object and a close cousin to Pluto. Therefore there’s every reason to believe that we will spot some uncanny similarities between Pluto and Triton when seen up close.
In the run-up to the New Horizons flyby, there will be lots of opportunities to refine the model with new data.
Although he has yet to evaluate the SER Pluto model, New Horizons Principle Investigator Alan Stern, planetary scientist at the Southwest Research Institute, is keen to point out that as the spacecraft approaches the outer solar system observations of Pluto will become more and more detailed, inevitably enriching models like Méndez’s visualization.
Read more at Discovery News
No comments:
Post a Comment