Aug 27, 2012

Neutrino Halo May Change Supernova 'Flavor'

When Carl Sagan said "we're made of star stuff" he wasn't kidding; there's no other way that the elements heavier than lithium could have been formed if it wasn't for the stellar kilns in the cores of stars or the violent eruption of supernovae.

In the case of a supernova, when a massive star runs out of fuel, it may collapse under gravity and then explode. During the detonation process, the supernova generates heavy elements that go on to seed planets, other stars and, ultimately, the elements that form organic compounds that we find inside our bodies.

But what elements are formed? And how do neutrinos affect the collapse of a massive star? Graduate student John Cherry, of the University of California, San Diego, thinks he's stumbled across an answer.

One type of supernova is known as a core-collapse supernova -- it occurs when a massive star is starved of fuel. When this happens, the rate of nuclear fusion slows in the core and gravity starts to take over. The core rapidly collapses.

During this process, a dense neutron star can suddenly form, causing a rebound of in-falling stellar material. At this point, neutrinos flood outward from the core, blasting through the shrinking stellar body.

Neutrinos are ghostly particles that zip through space unhindered. They are so weakly interacting that they can pass through the Earth without hitting any other particle. In fact, as I sit here typing at my computer, billions of neutrinos -- from the sun and other cosmic sources -- are passing through my body every second. (Aside: To detect neutrinos, huge caverns filled with water surrounded by sensors are used to detect the rare "flash" a neutrino will make when it happens to hit a water molecule head-on. These "accidental" collisions are very rare, so in the interest of statistical probability it helps to make your neutrino detector as large as possible.)

Inside a core collapse supernova, the density of the material is very high as it accretes into the core forming the neutron star. It is calculated that this material will interact with the outflowing neutrinos, scattering a small percentage of them. These scattered neutrinos create a "neutrino halo" that can, in turn, interact with the outflowing neutrinos.


But the fraction of outflowing neutrinos affected was thought to be minuscule and was often ignered during simulations. Cherry's calculations disagree, however -- his model suggests that a correction factor of 14 percent needs to be applied. In the outermost portions of the exploding supernova, this correction factor rose ten-fold. This means the neutrinos streaming from the core interacted with halo neutrinos far more often than previous theories anticipated.

What has this got to do with the price of eggs? Neutrinos are weakly interacting lightweights; a supernova literally shapes galaxies -- one has little effect on the other, right?

Actually, this neutrino halo interaction could directly influence the nature of the supernova, literally changing the types of elements that can be spawned from the stellar event. And it all comes down to flavor -- the "flavor" of neutrinos.

A strange little fact about neutrinos is that they come in three different varieties, or flavors -- electron, muon and tau. Three flavors may seem pretty limited when it comes to an ice cream shop, but to neutrinos, their flavor is critical. What's more, neutrinos can change their flavor.

Read more at Discovery News

No comments:

Post a Comment