Feb 19, 2017

How humans bond: The brain chemistry revealed

Mother and baby bonding.
In new research published Monday in the journal Proceedings of the National Academy of Sciences, Northeastern University psychology professor Lisa Feldman Barrett found, for the first time, that the neurotransmitter dopamine is involved in human bonding, bringing the brain's reward system into our understanding of how we form human attachments. The results, based on a study with 19 mother-infant pairs, have important implications for therapies addressing postpartum depression as well as disorders of the dopamine system such as Parkinson's disease, addiction, and social dysfunction.

"The infant brain is very different from the mature adult brain -- it is not fully formed," says Barrett, University Distinguished Professor of Psychology and author of the forthcoming book How Emotions Are Made: The Secret Life of the Brain. "Infants are completely dependent on their caregivers. Whether they get enough to eat, the right kind of nutrients, whether they're kept warm or cool enough, whether they're hugged enough and get enough social attention, all these things are important to normal brain development. Our study shows clearly that a biological process in one person's brain, the mother's, is linked to behavior that gives the child the social input that will help wire his or her brain normally. That means parents' ability to keep their infants cared for leads to optimal brain development, which over the years results in better adult health and greater productivity."

To conduct the study, the researchers turned to a novel technology: a machine capable of performing two types of brain scans simultaneously -- functional magnetic resonance imaging, or fMRI, and positron emission tomography, or PET.

fMRI looks at the brain in slices, front to back, like a loaf of bread, and tracks blood flow to its various parts. It is especially useful in revealing which neurons are firing frequently as well as how different brain regions connect in networks. PET uses a small amount of radioactive chemical plus dye (called a tracer) injected into the bloodstream along with a camera and a computer to produce multidimensional images to show the distribution of a specific neurotransmitter, such as dopamine or opioids.

Barrett's team focused on the neurotransmitter dopamine, a chemical that acts in various brain systems to spark the motivation necessary to work for a reward. They tied the mothers' level of dopamine to her degree of synchrony with her infant as well as to the strength of the connection within a brain network called the medial amygdala network that, within the social realm, supports social affiliation.

"We found that social affiliation is a potent stimulator of dopamine," says Barrett. "This link implies that strong social relationships have the potential to improve your outcome if you have a disease, such as depression, where dopamine is compromised. We already know that people deal with illness better when they have a strong social network. What our study suggests is that caring for others, not just receiving caring, may have the ability to increase your dopamine levels."

Before performing the scans, the researchers videotaped the mothers at home interacting with their babies and applied measurements to the behaviors of both to ascertain their degree of synchrony. They also videotaped the infants playing on their own.

Once in the brain scanner, each mother viewed footage of her own baby at solitary play as well as an unfamiliar baby at play while the researchers measured dopamine levels, with PET, and tracked the strength of the medial amygdala network, with fMRI.

The mothers who were more synchronous with their own infants showed both an increased dopamine response when viewing their child at play and stronger connectivity within the medial amygdala network. "Animal studies have shown the role of dopamine in bonding but this was the first scientific evidence that it is involved in human bonding," says Barrett. "That suggests that other animal research in this area could be directly applied to humans as well."

Read more at Science Daily

No comments:

Post a Comment