Aug 6, 2022

New study calculates retreat of glacier edges in Alaska's Kenai Fjords National Park

As glaciers worldwide retreat due to climate change, managers of national parks need to know what's on the horizon to prepare for the future. A new study from the University of Washington and the National Park Service measures 38 years of change for glaciers in Kenai Fjords National Park, a stunning jewel about two hours south of Anchorage.

The study, published Aug. 5 in The Journal of Glaciology, finds that 13 of the 19 glaciers show substantial retreat, four are relatively stable, and two have advanced. It also finds trends in which glacier types are disappearing fastest. The nearly 670,000-acre park hosts various glaciers: some terminate in the ocean, others in lakes or on land.

"These glaciers are a big draw for tourism in the park -- they're one of the main things that people come to see," said lead author Taryn Black, a UW doctoral student in Earth and space sciences. "Park managers had some information from satellite images, aerial photos, and repeat photography but they wanted a more complete understanding of changes over time."

The data show that lake-terminating glaciers, which include the popular Bear Glacier and Pedersen Glacier, are retreating fastest. Bear Glacier retreated by 5 kilometers (3 miles) between 1984 to 2021, and Pedersen Glacier retreated by 3.2 kilometers (2 miles) during that period.

"In Alaska, much glacier retreat is being driven by climate change," said Black. "These glaciers are at really low elevation. It's possibly causing them to get more rain in the winter rather than snow in addition to warming temperatures, which is consistent with other climate studies in this region."

One surprising finding was that Holgate Glacier, which as a tidewater glacier terminates at the ocean, has advanced in recent years. Local boat operators had reported seeing newly exposed land near the glacier's edge in 2020. But the new analysis shows that the overall glacier has been advancing for about 5 years, and appears to go through regular cycles of advance and retreat. The edges of most of the other tidewater glaciers were relatively stable over the study period.

The six land-terminating glaciers all showed intermediate response, with most retreating, especially in summer months, but at a slower rate than the lake-terminating glaciers. The only other glacier that advanced during the study period was land-terminating Paguna Glacier, which is covered in rock debris from a landslide caused by the 1964 Alaska earthquake. This debris insulates the glacier surface from melting.

To make the calculations, Black used 38 years of images captured by satellites in fall and spring to trace outlines for each of the 19 glaciers -- a total of about 600 outlines. She visually inspected each image to map the position of the glacier's edge. Black used a similar approach in recent research to calculate the rate of retreat of marine-terminating glaciers in west Greenland.

The new data for Alaska provide a baseline to study how climate change -- including warmer air temperatures, as well as changes in both the types and amount of precipitation -- will continue to affect these glaciers. All the glaciers in the study are considered maritime glaciers because they are subject to the warm, wet maritime climate.

The study has immediate application for park managers. These numbers help to quantify the changes that have been occurring and will continue for the glaciers and their immediate environments.

"We can't manage our lands well if we don't understand the habitats and processes occurring on them," said co-author Deborah Kurtz at the U.S. National Park Service in Seward, Alaska.

As the park's Physical Science Program Manager, Kurtz is also interested in the changes to the surrounding river, lake and landscape ecosystems, and how to communicate those changes to the public.

"Interpretation and education are also an important part of the National Park Service mission," Kurtz said. "These data will allow us to provide scientists and visitors with more details of the changes occurring at each specific glacier, helping everyone to better understand and appreciate the rate of landscape change we are experiencing in this region."

Read more at Science Daily

Ragweed allergy: Aggressiveness of pollen is determined by its place of origin and by the environment

The different geographic and climatic regions from which ragweed pollen originates, as well as the degree of environmental pollution, may influence the severity of allergic reactions such as hay fever and asthma. Pollen from plants in different areas exhibit different levels of aggressiveness. This is the conclusion reached by an inter-university study team led by MedUni Vienna and involving the University of Vienna and the University of Natural Resources and Applied Life Sciences. The study was recently published in the journal Frontiers in Allergy.

The research team developed an allergy model in which mice inhaled pollen from ragweed plants (Ambrosia artemisiifolia) collected in different geographic locations. They found that even a small amount of pollen (a total of 180 pollen grains) is sufficient to produce an allergic reaction, much less than the high pollen concentrations found in the air during the seasonal flowering period. As a result of climate change, the European flowering season is getting longer, and the plant is able to spread to more northerly areas. Furthermore, the regional origin of the pollen determines the severity of the allergic reaction it produces. The lead researcher and coordinator of the "Atopica" project, Michelle Epstein from MedUni Vienna, explained: "Our study shows that pollen from distinct environments can differ in its aggressiveness. So not only the concentration of the pollen in the air but also intrinsic changes (from within) related to the environment could alter the pollen's ability to sensitise and cause more severe allergic symptoms."

Wolfram Weckwerth, Professor at the Department of Functional and Evolutionary Ecology of the University of Vienna and one of the authors, said: "We now know that environmental factors change the aggressiveness of pollen. The next steps are further characterisation of the pollen, especially at the molecular level, to unambiguously identify the mixture of allergenic components." Anke Bellaire, a collaborator at the Department of Structural and Functional Botany at the Department of Botany and Biodiversity, University of Vienna, and also one of the authors, added: "Following these exciting results, we plan to continue ultrastructural subcellular analysis of ragweed pollen for further characterisation."

Gerhard Karrer, professor of botany at the University of Natural Resources and Applied Life Sciences, who was part of the team that collected the pollen in Austria, said: "The control of ragweed is a major public health concern and an adaptation strategy for mitigating and managing the impacts of climate change."

According to the researchers, there is a high probability that climate change and other environmental factors will also affect a number of other pollen-producing plants. This applied research model now provides a strategy for further studies investigating the impacts of climate change on pollen allergy.

33 million Europeans suffer from ragweed allergy

Ragweed (Ambrosia artemisiifolia) is a highly allergenic plant whose pollen causes hay fever in sensitized people and can lead to asthma. Currently, over 33 million Europeans suffer from ragweed allergy and researchers predict an increase to 77 million cases by 2060 as a result of climate change. The EU's annual economic burden of allergic asthma is already estimated to be as much as €151 billion. Ragweed is an invasive plant that is spreading particularly rapidly in Europe in the French Rhône Valley, in northern Italy, Hungary and Croatia. The season begins in August and extends throughout autumn. However, with global warming, the season is getting longer, and warmer temperatures will encourage ragweed plants to grow in more northerly areas and at higher altitudes. A single plant can produce about a billion grains of pollen per season, and these can travel over a thousand kilometres on the wind.

Read more at Science Daily

Aug 5, 2022

Cosmic Evolution Early Release Science Survey: Wide view of the early universe

New images from NASA's James Webb Space Telescope show what may be among the earliest galaxies ever observed. The images include objects from more than 13 billion years ago, and one offers a much wider field of view than Webb's First Deep Field image, which was released July 12. The images represent some of the first out of a major collaboration of astronomers and other academic researchers teaming with NASA and global partners to uncover new insights about the universe.

The images were taken from the Cosmic Evolution Early Release Science Survey (CEERS), led by a scientist at The University of Texas at Austin. Jeyhan Kartaltepe, an associate professor from Rochester Institute of Technology's School of Physics and Astronomy, is one of 18 co-investigators from 12 institutions along with more than 100 collaborators from the U.S. and nine other countries. CEERS researchers are studying how some of the earliest galaxies formed when the universe was less than 5 percent of its current age, during a period known as reionization, and how galaxies evolved between then and today.

The team has identified one particularly exciting object that they estimate is being observed as it was just 290 million years after the Big Bang. Astronomers refer to this as a redshift of z~14.

The finding has been published on the preprint server arXiv and is awaiting publication in a peer-reviewed journal. If the finding is confirmed, it would be one of the earliest galaxies ever observed, and its presence would indicate that galaxies started forming much earlier than many astronomers previously thought.

The unprecedentedly sharp images reveal a flurry of complex galaxies evolving over time -- some elegantly mature pinwheels, others blobby toddlers, still others gauzy swirls of do-si-doing neighbors. The images, which took about 24 hours to collect, are from a patch of sky near the handle of the Big Dipper, a constellation formally named Ursa Major. This same area of sky was observed previously by the Hubble Space Telescope, as seen in the Extended Groth Strip.

"These images are exciting because the sheer number of these really high redshift galaxy candidates is larger than we expected," said Kartaltepe. "We knew we'd find some, but I don't think anybody thought we'd find as many as we have. It either means the universe works a little bit differently than we thought or there's a lot of other contaminating sources and these candidates will turn out to be something else. The reality is probably a mix of both."

Kartaltepe has multiple leading roles in the survey, focusing on morphology -- measuring the shapes and sizes of galaxies and studying how their structures evolved -- and setting up and analyzing spectroscopic observations of distant galaxies using the NIRSpec instrument. Three of her astrophysical sciences and technology Ph.D. students -- Isabella Cox, Caitlin Rose, and Brittany Vanderhoof -- have been involved in the survey and working with the data.

The entire CEERS program will involve more than 60 hours of telescope time. Much more imaging data will be collected in December, along with spectroscopic measurements of hundreds of distant galaxies.

Read more at Science Daily

Signs of disturbance in nearby dwarf galaxies indicate an alternative gravity theory

Dwarf galaxies are small, faint galaxies that can usually be found in galaxy clusters or near larger galaxies. Because of this, they might be affected by the gravitational effects of their larger companions. "We introduce an innovative way of testing the standard model based on how much dwarf galaxies are disturbed by gravitational ,tides' from nearby larger galaxies," said Elena Asencio, a PhD student at the University of Bonn and the lead author of the story. Tides arise when gravity from one body pulls differently on different parts of another body. These are similar to tides on Earth, which arise because the moon pulls more strongly on the side of Earth which faces the moon.

The Fornax Cluster has a rich population of dwarf galaxies. Recent observations show that some of these dwarfs appear distorted, as if they have been perturbed by the cluster environment. "Such perturbations in the Fornax dwarfs are not expected according to the Standard Model," said Pavel Kroupa, Professor at the University of Bonn and Charles University in Prague. "This is because, according to the standard model, the dark matter halos of these dwarfs should partly shield them from tides raised by the cluster."

The authors analyzed the expected level of disturbance of the dwarfs, which depends on their internal properties and their distance to the gravitationally powerful cluster center. Galaxies with large sizes but low stellar masses and galaxies close to the cluster centre are more easily disturbed or destroyed. They compared the results with their observed level of disturbance evident from photographs taken by the VLT Survey Telescope of the European Southern Observatory.

"The comparison showed that, if one wants to explain the observations in the standard model" - said Elena Asencio - "the Fornax dwarfs should already be destroyed by gravity from the cluster center even when the tides it raises on a dwarf are sixty-four times weaker than the dwarf's own self-gravity." Not only is this counter-intuitive, she said, it also contradicts previous studies, which found that the external force needed to disturb a dwarf galaxy is about the same as the dwarf's selfgravity.

Contradiction to the standard model

From this, the authors concluded that, in the standard model, it is not possible to explain the observed morphologies of the Fornax dwarfs in a self-consistent way. They repeated the analysis using Milgromian dynamics (MOND). Instead of assuming dark matter halos surrounding galaxies, the MOND theory proposes a correction to Newtonian dynamics by which gravity experiences a boost in the regime of low accelerations.

"We were not sure that the dwarf galaxies would be able to survive the extreme environment of a galaxy cluster in MOND, due to the absence of protective dark matter halos in this model - admitted Dr Indranil Banik from the University of St Andrews - "but our results show a remarkable agreement between observations and the MOND expectations for the level of disturbance of the Fornax dwarfs."

"It is exciting to see that the data we obtained with the VLT survey telescope allowed such a thorough test of cosmological models," said Aku Venhola from the University of Oulu (Finland) and Steffen Mieske from the European Southern Observatory, co-authors of the study.

This is not the first time that a study testing the effect of dark matter on the dynamics and evolution of galaxies concluded that observations are better explained when they are not surrounded by dark matter. "The number of publications showing incompatibilities between observations and the dark matter paradigm just keeps increasing every year. It is time to start investing more resources into more promising theories," said Pavel Kroupa, member of the Transdisciplinary Research Areas "Modelling" and "Matter" at the University of Bonn.

Dr. Hongsheng Zhao from the University of St Andrews added: "Our results have major implications for fundamental physics. We expect to find more disturbed dwarfs in other clusters, a prediction which other teams should verify."

Read more at Science Daily

Oft-overlooked grasslands build biodiversity, resilience over centuries

Grasslands' biodiversity and resilience to disturbances such as fire, heat and drought is the result of a slow process over hundreds of years, like that of old growth forests, finds new University of Colorado Boulder-led research.

Publishing in the journal Science on Aug. 5, 2022, as part of a special issue on grasslands, the study contradicts years of assumptions that grasslands' ecological development is quick and their recovery is rapid, posing new challenges to their successful restoration.

"Old growth grasslands have a unique suite of characteristics that develop over a really long time. Recovering grasslands do not have the same species or the same characteristics as they did prior to soil tilling or tree planting, and they take centuries to redevelop," said Katharine Suding, senior author of the paper and Distinguished Professor in the Department of Ecology and Evolutionary Biology and Institute of Arctic and Alpine Research (INSTAAR) at CU Boulder. "It's an important reminder that we need to conserve the ancient grasslands that are still intact."

An expert in the field of North American grasslands, Suding partnered with other experts from around the world to evaluate the current state of global grassland science, conservation and restoration -- from arid, prairie and coastal grasslands, to those in the tropics and savannahs.

Grasslands, which account for nearly 40% of land-based ecosystems, provide habitat for a wide diversity of animals and plants, and contribute to the livelihoods of over 1 billion people worldwide. They also provide significant carbon sequestration and biodiversity benefits, and can be more resilient than forests in the face of a quickly changing climate.

Yet over the past couple of centuries, ancient grasslands around the world have largely been converted into farmland, used to grow trees or been developed as cities expand.

The researchers found that while the destruction of these pristine grasslands can occur very quickly, complete recovery of grassland biodiversity and essential ecosystem functions occurs slowly or not at all. The findings further emphasize the importance of conserving the world's remaining untouched grasslands.

"If you plant trees in an older grassland or till it for agriculture, you will probably never get many of the unique diversity and belowground characteristics back. It is irreversible," said Suding.

Restoration takes time


Grasslands store the bulk of their material underground, in roots that can reach as far as 20 feet deep. This unseen physical presence is how they can store a lot of carbon -- about a third of all carbon stored on land -- and remain resilient to fire and other ecological disturbances. It's also why grasslands are often underappreciated in comparison to forests. If it's out of sight, it's out of mind.

Grassland restoration, however, can take a page out of forests' playbook.

"'Old growth' is not only a term for forests, but one that applies to grasslands as well," said co-author Elise Buisson, who co-authored that finding in a 2015 publication.

Old growth grasslands are unique in their underground structures and biodiversity compared to newer, younger grasslands. And while these old growth ecosystems may never be fully replicated in modern-day landscapes, they provide a model for restoration efforts, said Suding.

Even a decade ago, grassland restoration focused on distributing species' seed onto a landscape, adding grazing or fire, and stepping aside. The new analysis finds that it takes more than a hands-off approach to be successful. Instead of tossing all the ingredients into a crockpot and turning it on high, grasslands may need more of a step-by-step recipe approach to restoration.

"We should think of restoration as more of guiding a trajectory. Some species don't come in right at the start, and the disturbance that maintains the grassland needs time to grow and be tweaked as these species get established and the soil develops," said Suding. "These processes take time."

For example, some plants do well reproducing from seed in, say, the upper Midwest but not in Colorado due to the drier climate. Many tropical grasses don't spread by seed at all, instead by rhizomes and tubers underground, and are much more difficult to reestablish.

Implications for policy

The report comes a year after the start of the United Nations Decade on Ecosystem Restoration, which aims to restore degraded ecosystems around the world to increase biodiversity, help achieve the Sustainable Development Goals and the Paris Climate Agreement. At the same time, planting trees has become a popular "natural solution" around the world to remove large quantities of carbon from the atmosphere.

Yet while the UN initiative explicitly states, "planting trees on natural grassland may destroy more than it creates," as countries make ambitious goals and commitments to ecosystem restoration this decade, Suding worries that for many, this only means planting trees.

"We would lose a huge element of the biodiversity on Earth if we planted trees in old growth grasslands," said Suding. "I think we need to be a little bit more careful about what's best for the globe, in terms of where to restore what."

As climate change threatens the American West through drought, heat and wildfire, grasslands are also a resilient choice to use less water, reduce soil erosion and keep carbon in the ground over time. It's the older, veteran grasslands that are most beneficial in this regard.

Read more at Science Daily

Air pollution, including during wildfires, shows ill effects in children

New research linking air pollution data from federal monitors in the Sacramento area of California, including during significant fires, is showing ill effects of pollution exposure among children, a new University of California, Davis, study suggests.

Blood samples show that children have elevated markers of inflammation, such as interleukin 6, if they were exposed to higher air pollution. Further, higher air pollution was linked to lower cardiac autonomic regulation in children, which impacts how fast the heart beats and how hard it pumps, according to the study.

In the study, published Aug. 3 date in the journal New Directions for Child and Adolescent Research, researchers looked at blood samples from more than 100 healthy children ages 9-11 in the Sacramento area where pollutants near their homes were recorded by the Environmental Protection Agency. The study was authored by Anna M. Parenteau, a doctoral student, and Camelia E. Hostinar, associate professor, both from the UC Davis Department of Psychology. The work took place at UC Davis.

These findings are important because exposure to pollutants released during wildfires has been related to numerous negative health outcomes in children, who have smaller bodies and organ systems than adults, including asthma and decreased lung function, as well as neurodevelopmental outcomes like attention deficit hyperactivity disorder, autism, and deficits in school performance and memory, researchers said.

Looked at particulates


Researchers looked at fine particulate matter data from the EPA (PM2.5) -- or the fine particles that can penetrate lungs and pass into the bloodstream -- finding the children's blood contained markers of systemic inflammation. Additionally, PM2.5, which refers to particulate matter measuring 2.5 micrometers or smaller by the EPA, was linked to lower cardiac autonomic regulation assessed using an electrocardiogram. Specifically, researchers used data files maintained by the EPA, which have daily air quality summary information from each outdoor monitor in the country.

In total, 27 of the children studied had inflammation markers in their blood recorded during significant fires when their neighborhoods recorded significant levels of PM2.5 in the air. These times when fires were burning included during the Mendocino Complex Fire in 2018, which was active about 100 miles from the lab where blood was drawn. The findings were similar to those found in an earlier study, in which the blood of young primates was collected by UC Davis researchers after significant wildfires.

"By examining daily and monthly levels of particulate matter in relation to children's inflammation and autonomic physiology, this study further demonstrates the immediate consequences of exposure to air pollution, which may increase risk of future disease," Parenteau said. Furthermore, Parenteau added: "As climate change continues to impact children and families, it is paramount to understand the impact of environmental contaminants such as air pollution on children's physiology."

Previous studies with children have shown significant associations between ambient air pollution and allergic sensitization, respiratory symptoms, and ultra-structural and cellular changes to their lungs and airways, researchers said.

Researchers have found children may be especially susceptible to the effects of air pollution, given that, compared to adults, they have a higher intake of contaminants and greater lung surface area relative to their body weight.

Continued developmental research on environmental contaminants can sound the alarm about the effects of air pollution and inform policy changes that could promote long-term population health, researchers concluded.

Read more at Science Daily

These baboons borrowed a third of their genes from their cousins

New genetic analyses of wild baboons in southern Kenya reveals that most of them carry traces of hybridization in their DNA. As a result of interbreeding, about a third of their genetic makeup consists of genes from another, closely-related species.

The study took place in a region near Kenya's Amboseli National Park, where yellow baboons occasionally meet and intermix with their anubis baboon neighbors that live to the northwest.

Researchers have monitored these animals on a near-daily basis since 1971, noting when they mated with outsiders and how the resulting offspring fared over their lifetimes as part of the Amboseli Baboon Research Project, one of the longest-running field studies of wild primates in the world.

Yellow baboons have yellow-brown fur with white cheeks and undersides. Anubis baboons have greenish-grey fur and males with shaggy manes around their heads. Although they are distinct species that diverged 1.4 million years ago, they can hybridize where their ranges overlap.

By all accounts, the offspring of these unions manage just fine. Fifty years of observations turned up no obvious signs that hybrids fare any worse than their counterparts. Some even fare better than expected: baboons that carry more anubis DNA in their genome mature faster and form stronger social bonds, and males are more successful at winning mates.

But new genetic findings published Aug. 5 in the journal Science suggest that appearances can be deceiving.

The research sheds light on how the diversity of species on Earth is maintained even when the genetic lines between species are blurry, said Duke University professor Jenny Tung, who led the project with her doctoral students Tauras Vilgalys and Arielle Fogel.

Interspecies mating is surprisingly common in animals, said Fogel, who is a PhD candidate in the Duke University Program in Genetics and Genomics. Some 20% to 30% of apes, monkeys and other primate species interbreed and mix their genes with others.

Even modern humans carry around a mix of genes from now-extinct relatives. As much as 2% to 5% of the DNA in our genomes points to past hybridization with the Neanderthals and Denisovans, ancient hominins our ancestors encountered and mated with as they migrated out of Africa into Europe and Asia. Those liaisons left a genetic legacy that still lingers today, affecting our risk of depression, blood clots, even tobacco addiction or complications from COVID-19.

The researchers wanted to understand the possible costs and benefits of this genetic mixing in primates, including humans. But modern humans stopped interbreeding with other hominins tens of thousands of years ago, when all but one species -- ours -- went extinct. The wild baboons of Amboseli, however, make it possible to study primate hybridization that is still ongoing.

The researchers analyzed the genomes of some 440 Amboseli baboons spanning nine generations, looking for bits of DNA that may have been inherited from anubis immigrants.

They found that all baboons in the Amboseli basin of southern Kenya today are a mix, with anubis DNA making up about 37% of their genomes on average. Some have anubis ancestry due to interbreeding that occurred fairly recently, within the last seven generations. But for nearly half of them the mixing happened further back, hundreds to thousands of generations ago.

During that time, the data show that certain bits of anubis DNA came at a cost for the hybrids who inherited them, affecting their survival and reproduction in such a way that these genes are less likely to show up in their descendants' genomes today, said Vilgalys, now a postdoctoral scholar at the University of Chicago.

Their results are in line with genetic research in humans, which suggests that our early ancestors paid a price for hybridizing too. But exactly what Neanderthal and Denisovan genes did to cause them harm has been hard to tease out of the limited fossil and DNA evidence that's available.

The researchers say that the baboons at Amboseli offer clues to the costs of the hybridization. Using RNA sequencing to measure gene activity in the baboons' blood cells, the researchers found that natural selection is more likely to weed out bits of borrowed DNA that act as switches, turning other genes on and off.

The next step, Fogel said, is to pin down more precisely what is ultimately affecting these hybrid baboons' ability to survive and reproduce.

Genomic data allows researchers to look back many more generations and study historical processes that can't be seen directly in the field, Vilgalys said.

"But you need to look at the animals themselves to understand what genetic changes actually mean," Tung said. "You need both fieldwork and genetics to get the whole story."

"We're not saying this is what Neanderthal and Denisovans genes did in humans," added Tung, now at the Max Planck Institute for Evolutionary Anthropology in Germany. "But the baboon case makes it clear that genomic evidence for costs to hybridization can be consistent with animals that not only survive, but often thrive."

Read more at Science Daily

Aug 4, 2022

Webb captures stellar gymnastics in the Cartwheel Galaxy

NASA's James Webb Space Telescope has peered into the chaos of the Cartwheel Galaxy, revealing new details about star formation and the galaxy's central black hole. Webb's powerful infrared gaze produced a detailed image of the Cartwheel and two smaller companion galaxies against a backdrop of many other galaxies. The image provides a new view of how the Cartwheel Galaxy has changed over billions of years.

The Cartwheel Galaxy, located about 500 million light-years away in the Sculptor constellation, is a rare sight. Its appearance, much like that of the wheel of a wagon, is the result of an intense event -- a high-speed collision between a large spiral galaxy and a smaller galaxy not visible in this image. Collisions of galactic proportions cause a cascade of different, smaller events between the galaxies involved; the Cartwheel is no exception.

The collision most notably affected the galaxy's shape and structure. The Cartwheel Galaxy sports two rings -- a bright inner ring and a surrounding, colorful ring. These two rings expand outwards from the center of the collision, like ripples in a pond after a stone is tossed into it. Because of these distinctive features, astronomers call this a "ring galaxy," a structure less common than spiral galaxies like our Milky Way.

The bright core contains a tremendous amount of hot dust with the brightest areas being the home to gigantic young star clusters. On the other hand, the outer ring, which has expanded for about 440 million years, is dominated by star formation and supernovas. As this ring expands, it plows into surrounding gas and triggers star formation.

Other telescopes, including the Hubble Space Telescope, have previously examined the Cartwheel. But the dramatic galaxy has been shrouded in mystery -- perhaps literally, given the amount of dust that obscures the view. Webb, with its ability to detect infrared light, now uncovers new insights into the nature of the Cartwheel.

The Near-Infrared Camera (NIRCam), Webb's primary imager, looks in the near-infrared range from 0.6 to 5 microns, seeing crucial wavelengths of light that can reveal even more stars than observed in visible light. This is because young stars, many of which are forming in the outer ring, are less obscured by the presence of dust when observed in infrared light. In this image, NIRCam data are colored blue, orange, and yellow. The galaxy displays many individual blue dots, which are individual stars or pockets of star formation. NIRCam also reveals the difference between the smooth distribution or shape of the older star populations and dense dust in the core compared to the clumpy shapes associated with the younger star populations outside of it.

Learning finer details about the dust that inhabits the galaxy, however, requires Webb's Mid-Infrared Instrument (MIRI). MIRI data are colored red in this composite image. It reveals regions within the Cartwheel Galaxy rich in hydrocarbons and other chemical compounds, as well as silicate dust, like much of the dust on Earth. These regions form a series of spiraling spokes that essentially form the galaxy's skeleton. These spokes are evident in previous Hubble observations released in 2018, but they become much more prominent in this Webb image.

Webb's observations underscore that the Cartwheel is in a very transitory stage. The galaxy, which was presumably a normal spiral galaxy like the Milky Way before its collision, will continue to transform. While Webb gives us a snapshot of the current state of the Cartwheel, it also provides insight into what happened to this galaxy in the past and how it will evolve in the future.

Read more at Science Daily

Change in bird coloration due to climate change

The work, which was conducted over a 15-year period (2005-2019) through a partnership between scientists from the UPV/EHU and the Centre d'Ecologie Fonctionnelle et Évolutive in Montpellier (CEFE-CNRS), focused on two populations of blue tits in the south of France, one located on the outskirts of Montpellier and the other in the northwest of the island of Corsica.

Each year between 2005 and 2019, all breeding blue tits in each population were captured. As a result, researchers from the two institutions were able to gather more than 5,800 observations on the colouring and other characteristics of the blue tits.

The blue tit is characterised by its striking colouring: a blue crest and a yellow breast. The results obtained in the study show a decrease in both populations of blue and yellow colouration between 2005 and 2019. In other words, the blue crests and yellow breasts of blue tits in these two populations are on average less colourful right now than when the research began.

"Our work suggests that environmental changes, and specifically climate change, could be the main reason why birds such as the blue tit are undergoing a change in their physical features, more specifically in the brightness and intensity of their colouration," said David López-Idiáquez, researcher in the UPV/EHU's Department of Plant Biology and Ecology.

"A negative trend in terms of brightness and intensity of plumage colouration in both sexes and populations has been observed, although in Corsica this change is more associated with climate," explained López." The change in plumage colour seems to be the result of a combination of a rise in temperature (1.23ºC) and a fall in rainfall (0.64 mm), so climate change would be the potential cause of this difference," he said.

Change in species mating patterns

It may appear to be a purely aesthetic change, but just the opposite is true, as this change in plumage may have an effect on the "mating patterns" of the species. "In these birds, traits such as colouring function as signals to indicate to other individuals the quality of the specimen, which are decisive, for example, when it comes to breeding," explained David López.

"This study was possible thanks to the continuous monitoring of the two blue tit populations for more than 15 years, which highlights the importance of long-term studies to understand the effects of climate change on the ecosystems around us," he said.

When there is a variation in the territory, animal populations have 4 options: the first is to undergo genetic change; the second is to undergo plastic change (change in physical characteristics without genetic changes); the third is to migrate; and the last, to disappear. "It is important to stress that this change is not genetic but plastic, one of the ways of adapting to new environmental conditions," he pointed out.

Change in our environment


"Given that our environment is quite similar, albeit less hot, our birds may be undergoing the same change," surmised David. "In any case, there are only four studies of this type in the world, and none of them has been carried out in the Basque Country; I think it would be very interesting to carry out more research like this not only on a Basque level, but also on a national level," he added.

Read more at Science Daily

New global map of ant biodiversity reveals areas that may hide undiscovered species

They are hunters, farmers, harvesters, gliders, herders, weavers, and carpenters. They are ants, and they are a big part of our world, comprising over 14,000 species and a large fraction of animal biomass in most terrestrial ecosystems. Like other invertebrates, ants are important for the functioning of ecosystems. They play vital roles from aerating soil and dispersing seeds and nutrients, to scavenging and preying on other species. Yet a global view of their diversity is lacking. Now, researchers from the Biodiversity and Biocomplexity Unit at the Okinawa Institute of Science and Technology (OIST), in collaboration with multiple institutes around the world, have developed a high-resolution map that combines existing knowledge with machine learning to estimate and visualize the global diversity of ants. The maps and dataset were published in an article in Science Advances.

"This study helps to add ants, and terrestrial invertebrates in general, to the discussion on biodiversity conservation," said Prof. Evan Economo, who leads the Biodiversity and Biocomplexity Unit. "We need to know the locations of high diversity centers of invertebrates so that we know the areas that can be the focus of future research and environmental protection."

Prof. Economo added that the resource will also serve to answer a number of biological and evolutionary questions, such as how life diversified and how patterns in diversity arose.

This decade-long project began when study co-first author and former OIST postdoc Dr. Benoit Guénard (now at The University of Hong Kong), worked with Prof. Economo to create a database of occurrence records for different ant species from online repositories, museum collections, and around 10,000 scientific publications. Researchers around the world contributed and helped identify errors. More than 14,000 species were considered, which varied dramatically in the amount of data available.

However, the vast majority of these records, while containing a description of the sampled location, did not have the precise coordinates needed for mapping. To address this, coauthor Kenneth Dudley from OIST's Environmental Informatics Section built a computational workflow to estimate the coordinates from the available data, which also checked all the data for errors.

Then JSPS Postdoctoral Researcher and co-first author Dr. Jamie Kass, with Dudley and research technician Fumika Azuma, made different range estimates for each species of ant depending on how much data was available. For species with less data, they constructed shapes surrounding the data points. For species with more data, the researchers predicted the distribution of each species using statistical models that they tuned for optimal complexity.

The researchers brought these estimates together to form a global map, divided into a grid of 20 km by 20 km squares, that showed an estimate of the number of ant species per square (called the species richness). They also created a map that showed the number of ant species with very small ranges per square (called the species rarity). In general, species with small ranges are particularly vulnerable to environmental changes.

However, there was another problem to overcome -- sampling bias. "Some areas of the world that we expected to be centers of diversity were not showing up on our map, but ants in these regions were not well-studied," explained Dr. Kass. "Other areas were extremely well-sampled, for example parts of the USA and Europe, and this difference in sampling can impact our estimates of global diversity."

So, the researchers utilized machine learning to predict how their diversity would change if they sampled all areas around the world equally, and in doing so, identified areas where they estimate many unknown, unsampled species exist. Prof. Economo said, "This gives us a kind of 'treasure map', which can guide us to where we should explore next and look for new species with restricted ranges."

Okinawa, in southern Japan, was identified as a center for rarity, as many species endemic to these islands have very small ranges, around 1000 times smaller than species spread across North America and Europe. Thus, places like Okinawa are critical for environmental protection to conserve biodiversity.

When the researchers compared the rarity and richness of ant distributions to the comparatively well-studied amphibians, birds, mammals, and reptiles, they found that ants were about as different from these vertebrate groups as the vertebrate groups were from each other, which was unexpected given that ants are evolutionarily highly distant from vertebrates. This is important as it suggests that priority areas for vertebrate diversity may also have a high diversity of invertebrate species. But, at the same time, it is necessary to recognize that ant biodiversity patterns do have unique features. For example, the Mediterranean and East Asia show up as diversity centers for ants more than the vertebrates.

Finally, the researchers looked at how well-protected these areas of high ant diversity are. They found that it was a low percentage -- only 15% of the top 10% of ant rarity centers had some sort of legal protection, such as a national park or reserve, which is less than existing protection for vertebrates.

Read more at Science Daily

New chip-based beam steering device lays groundwork for smaller, cheaper lidar

Researchers have developed a new chip-based beam steering technology that provides a promising route to small, cost-effective and high-performance lidar (or light detection and ranging) systems. Lidar, which uses laser pulses to acquire 3D information about a scene or object, is used in a wide range of applications such as autonomous driving, free-space optical communications, 3D holography, biomedical sensing and virtual reality.

"Optical beam steering is a key technology for lidar systems, but conventional mechanical-based beam steering systems are bulky, expensive, sensitive to vibration and limited in speed," said research team leader Hao Hu from the Technical University of Denmark. "Although devices known as chip-based optical phased arrays (OPAs) can quickly and precisely steer light in a non-mechanical way, so far, these devices have had poor beam quality and a field of view typically below 100 degrees."

In Optica, Optica Publishing Group's journal for high-impact research, Hu and co-author Yong Liu describe their new chip-based OPA that solves many of the problems that have plagued OPAs. They show that the device can eliminate a key optical artifact known as aliasing, achieving beam steering over a large field of view while maintaining high beam quality, a combination that could greatly improve lidar systems.

"We believe our results are groundbreaking in the field of optical beam steering," said Hu. "This development lays the groundwork for OPA-based lidar that is low cost and compact, which would allow lidar to be widely used for a variety of applications such as high-level advanced driver-assistance systems that can assist in driving and parking and increase safety."

A new OPA design

OPAs perform beam steering by electronically controlling light's phase profile to form specific light patterns. Most OPAs use an array of waveguides to emit many beams of light and then interference is applied in far field (away from the emitter) to form the pattern. However, the fact that these waveguide emitters are typically spaced far apart from each other and generate multiple beams in the far field creates an optical artifact known as aliasing. To avoid the aliasing error and achieve a 180° field of view, the emitters need to be close together, but this causes strong crosstalk between adjacent emitters and degrades the beam quality. Thus, until now, there has been a trade-off between OPA field of view and beam quality.

To overcome this trade-off, the researchers designed a new type of OPA that replaces the multiple emitters of traditional OPAs with a slab grating to create a single emitter. This setup eliminates the aliasing error because the adjacent channels in the slab grating can be very close to each other. The coupling between the adjacent channels is not detrimental in the slab grating because it enables the interference and beam formation in the near field (close to the single emitter). The light can then be emitted to the far field with the desired angle. The researchers also applied additional optical techniques to lower the background noise and reduce other optical artifacts such as side lobes.

High quality and wide field of view


To test their new device, the researchers built a special imaging system to measure the average far-field optical power along the horizontal direction over a 180° field of view. They demonstrated aliasing-free beam steering in this direction, including steering beyond ±70°, although some beam degradation was seen.

They then characterized beam steering in the vertical direction by tuning the wavelength from 1480 nm to 1580 nm, achieving a 13.5° tuning range. Finally, they showed the versatility of the OPA by using it to form 2D images of the letters "D," "T" and "U" centered at the angles of -60°, 0° and 60° by tuning both the wavelength and the phase shifters. The experiments were performed with a beam width of 2.1°, which the researchers are now working to decrease to achieve beam steering with a higher resolution and a longer range.

Read more at Science Daily

Aug 3, 2022

Out with a bang: Explosive neutron star merger captured for the first time in millimeter light

Scientists using the Atacama Large Millimeter/submillimeter Array (ALMA) -- an international observatory co-operated by the US National Science Foundation's National Radio Astronomy Observatory (NRAO) -- have for the first time recorded millimeter-wavelength light from a fiery explosion caused by the merger of a neutron star with another star. The team also confirmed this flash of light to be one of the most energetic short-duration gamma-ray bursts ever observed, leaving behind one of the most luminous afterglows on record. The results of the research will be published in an upcoming edition of The Astrophysical Journal Letters.

Gamma-ray bursts (GRBs) are the brightest and most energetic explosions in the Universe, capable of emitting more energy in a matter of seconds than our Sun will emit during its entire lifetime. GRB 211106A belongs to a GRB sub-class known as short-duration gamma-ray bursts. These explosions -- which scientists believe are responsible for the creation of the heaviest elements in the Universe, such as platinum and gold -- result from the catastrophic merger of binary star systems containing a neutron star. "These mergers occur because of gravitational wave radiation that removes energy from the orbit of the binary stars, causing the stars to spiral in toward each other," said Tanmoy Laskar, who will soon commence work as an Assistant Professor of Physics and Astronomy at the University of Utah. "The resulting explosion is accompanied by jets moving at close to the speed of light. When one of these jets is pointed at Earth, we observe a short pulse of gamma-ray radiation or a short-duration GRB."

A short-duration GRB usually lasts only a few tenths of a second. Scientists then look for an afterglow, an emission of light caused by the interaction of the jets with surrounding gas. Even still, they're difficult to detect; only half-a-dozen short-duration GRBs have been detected at radio wavelengths, and until now none had been detected in millimeter wavelengths. Laskar, who led the research while an Excellence Fellow at Radboud University in The Netherlands, said that the difficulty is the immense distance to GRBs, and the technological capabilities of telescopes. "Short-duration GRB afterglows are very luminous and energetic. But these explosions take place in distant galaxies which means the light from them can be quite faint for our telescopes on Earth. Before ALMA, millimeter telescopes were not sensitive enough to detect these afterglows."

At roughly 20 billion light-years from Earth, GRB 211106A is no exception. The light from this short-duration gamma-ray burst was so faint that while early X-ray observations with NASA's Neil Gehrels Swift Observatory saw the explosion, the host galaxy was undetectable at that wavelength, and scientists weren't able to determine exactly where the explosion was coming from. "Afterglow light is essential for figuring out which galaxy a burst comes from and for learning more about the burst itself. Initially, when only the X-ray counterpart had been discovered, astronomers thought that this burst might be coming from a nearby galaxy," said Laskar, adding that a significant amount of dust in the area also obscured the object from detection in optical observations with the Hubble Space Telescope.

Each wavelength added a new dimension to scientists' understanding of the GRB, and millimeter, in particular, was critical to uncovering the truth about the burst. "The Hubble observations revealed an unchanging field of galaxies. ALMA's unparalleled sensitivity allowed us to pinpoint the location of the GRB in that field with more precision, and it turned out to be in another faint galaxy, which is further away. That, in turn, means that this short-duration gamma-ray burst is even more powerful than we first thought, making it one of the most luminous and energetic on record," said Laskar.

Wen-fai Fong, an Assistant Professor of Physics and Astronomy at Northwestern University added, "This short gamma-ray burst was the first time we tried to observe such an event with ALMA. Afterglows for short bursts are very difficult to come by, so it was spectacular to catch this event shining so bright. After many years of observing these bursts, this surprising discovery opens up a new area of study, as it motivates us to observe many more of these with ALMA, and other telescope arrays, in the future."

Joe Pesce, National Science Foundation Program Officer for NRAO/ALMA said, "These observations are fantastic on many levels. They provide more information to help us understand the enigmatic gamma-ray bursts (and neutron-star astrophysics in general), and they demonstrate how important and complementary multi-wavelength observations with space- and ground-based telescopes are in understanding astrophysical phenomena."

And there's plenty of work still to be done across multiple wavelengths, both with new GRBs and with GRB 211106A, which could uncover additional surprises about these bursts. "The study of short-duration GRBs requires the rapid coordination of telescopes around the world and in space, operating at all wavelengths," said Edo Berger, Professor of Astronomy at Harvard University. "In the case of GRB 211106A, we used some of the most powerful telescopes available -- ALMA, the National Science Foundation's Karl G. Jansky Very Large Array (VLA), NASA's Chandra X-ray Observatory, and the Hubble Space Telescope. With the now-operational James Webb Space Telescope (JWST), and future 20-40 meter optical and radio telescopes such as the next generation VLA (ngVLA) we will be able to produce a complete picture of these cataclysmic events and study them at unprecedented distances."

Read more at Science Daily

The brain already benefits from moderate physical activity, study shows

Even moderate physical activity has a positive effect on the brain. DZNE researchers led by Dr. Dr. Ahmad Aziz deduce this from examinations of 2,550 participants of the Bonn "Rhineland Study." According to their findings, certain areas of the brain are larger in physically active individuals than in those who are less active. In particular, brain regions that have a relatively high oxygen demand benefit from this effect. The research results are published in Neurology®, the medical journal of the American Academy of Neurology.

Exercise keeps body and mind healthy -- but little is known about exactly how and where physical activity affects our brains. "In previous research, the brain was usually considered as a whole," says Fabienne Fox, neuroscientist and lead author of the current study. "Our goal was to take a more detailed look at the brain and find out which regions of the brain physical activity impacts most."

Extensive Data from the Rhineland study

For their research, Fox and colleagues used data from the Rhineland Study, a large-scale population-based study conducted by DZNE in the Bonn city area. Specifically, they analyzed physical activity data from 2,550 volunteers aged 30 to 94 years, as well as brain images obtained by magnetic resonance imaging (MRI). To sample physical activity, the study participants wore an accelerometer on their upper thigh for seven days. The MRI scans provided information particularly on brain volume and thickness of the cortex.

The More Active, the Greater the Effects

"We were able to show that physical activity had a noticeable effect on almost all brain regions investigated. Generally, we can say that the higher and more intense the physical activity, the larger the brain regions were, either with regard to volume or cortical thickness," Fabienne Fox summarizes the research results. "In particular, we observed this in the hippocampus, which is considered the control center of memory. Larger brain volumes provide better protection against neurodegeneration than smaller ones." However, the dimensions of the brain regions do not increase linearly with physical activity. The research team found the largest, almost sudden volume increase when comparing inactive and only moderately physically active study participants -- this was particularly evident in older individuals over the age of 70.

"In principle, this is very good news -- especially for those who are reluctant to exercise," says Ahmad Aziz, who heads the research group "Population and Clinical Neuroepidemiology" at DZNE. "Our study results indicate that even small behavioral changes, such as walking 15 minutes a day or taking the stairs instead of the elevator, may have a substantial positive effect on the brain and potentially counteract age-related loss of brain matter and the development of neurodegenerative diseases. In particular, older adults can already profit from modest increases of low intensity physical activity."

Young and somewhat athletic subjects who usually engaged in moderate to intense physical activity also had relatively high brain volumes. However, in even more active subjects, these brain regions were slightly larger. Also here it showed: the more active, the greater the effect, although at high levels of physical activity, the beneficial effects tended to level off.

Brain Regions that Benefit the Most

To characterize the brain regions that benefited most from physical activity, the research team searched databases for genes that are particularly active in these brain areas. "Mainly, these were genes that are essential for the functioning of mitochondria, the power plants of our cells," says Fabienne Fox. This means that there are particularly large numbers of mitochondria in these brain regions. Mitochondria provide our body with energy, for which they need a lot of oxygen. "Compared to other brain regions, this requires increased blood flow. This is ensured particularly well during physical activity, which could explain why these brain regions benefit from exercise," says Ahmad Aziz.

Exercise Protects

The bioinformatic analysis further showed that there is a large overlap between genes whose expression is affected by physical activity and those that are impacted by neurodegenerative diseases such as Alzheimer's, Parkinson's, or Huntington's disease. This could offer a potential explanation for why physical activity has a neuroprotective effect, the research team concludes. "With our study, we were able to characterize brain regions that benefit from physical activity to an unprecedented level of detail," says Ahmad Aziz. "We hope our results will provide important leads for further research."

Read more at Science Daily

Perceived choice in music listening is linked to pain relief

A new study explores the use of music-listening to relieve acute pain, finding that people who were given the impression that they had control over the music they heard experienced more pain relief than people who were not given such control. Dr. Claire Howlin of Queen Mary University of London, U.K., and colleagues from University College Dublin, Ireland, present these findings in the open-access journal PLOS ONE on August 3, 2022.

Music listening can be used for pain relief, especially for chronic pain, i.e., pain lasting more than 12 weeks. However, the underlying mechanisms of these benefits are unclear, especially for acute pain, i.e., pain lasting less than 12 weeks. Basic musical features, such as tempo or energy, seem to be less important for pain relief; instead, feeling able to make decisions about the music may be key for pain relief. However, previous work has largely focused on findings from lab-based samples that did not explore real-world, pre-existing acute pain.

To improve understanding, Howlin and colleagues asked 286 adults experiencing real-world acute pain to rate their pain before and after listening to a music track. The track was specially composed in two different versions of varying complexity. Participants were randomly assigned to hear either the low- or high-complexity version, and some were randomly selected to be given the impression that they had some control over the musical qualities of the track, although they heard the same track regardless of their choice.

The researchers found that participants who felt they had control over the music experienced greater relief in the intensity of their pain than participants who were not given such an impression. In questionnaires, participants reported enjoying both versions of the track, but no links were found between music complexity and amount of pain relief. Additionally, participants who engage more actively with music in their everyday life experienced even greater pain-relief benefits from having a sense of control over the track used in this study.

These findings suggest that choice and engagement with music are important for optimizing its pain-relief potential. Future research could further explore the relationship between music choice and subsequent engagement, as well as strategies for boosting engagement to improve pain relief.

The authors add: "Now we know that the act of choosing music is an important part of the wellbeing benefits that we see from music listening. It's likely that people listen more closely, or more carefully when they choose the music themselves."

From Science Daily

Technology restores cell, organ function in pigs after death

Within minutes of the final heartbeat, a cascade of biochemical events triggered by a lack of blood flow, oxygen, and nutrients begins to destroy a body's cells and organs. But a team of Yale scientists has found that massive and permanent cellular failure doesn't have to happen so quickly.

Using a new technology they developed that delivers a specially designed cell-protective fluid to organs and tissues, the researchers restored blood circulation and other cellular functions in pigs a full hour after their deaths, they report in the Aug. 3 edition of the journal Nature.

The findings may help extend the health of human organs during surgery and expand availability of donor organs, the authors said.

"All cells do not die immediately, there is a more protracted series of events," said David Andrijevic, associate research scientist in neuroscience at Yale School of Medicine and co-lead author of the study. "It is a process in which you can intervene, stop, and restore some cellular function."

The research builds upon an earlier Yale-led project that restored circulation and certain cellular functions in the brain of a dead pig with technology dubbed BrainEx. Published in 2019, that study and the new one were led by the lab of Yale's Nenad Sestan, the Harvey and Kate Cushing Professor of Neuroscience and professor of comparative medicine, genetics, and psychiatry.

"If we were able to restore certain cellular functions in the dead brain, an organ known to be most susceptible to ischemia [inadequate blood supply], we hypothesized that something similar could also be achieved in other vital transplantable organs," Sestan said.

In the new study -- which involved senior author Sestan and colleagues Andrijevic, Zvonimir Vrselja, Taras Lysyy, and Shupei Zhang, all from Yale -- the researchers applied a modified version of BrainEx called OrganEx to the whole pig. The technology consists of a perfusion device similar to heart-lung machines -- which do the work of the heart and lungs during surgery -- and an experimental fluid containing compounds that can promote cellular health and suppress inflammation throughout the pig's body. Cardiac arrest was induced in anesthetized pigs, which were treated with OrganEx an hour after death.

Six hours after treatment with OrganEx, the scientists found that certain key cellular functions were active in many areas of the pigs' bodies -- including in the heart, liver, and kidneys -- and that some organ function had been restored. For instance, they found evidence of electrical activity in the heart, which retained the ability to contract.

"We were also able to restore circulation throughout the body, which amazed us," Sestan said.

Normally when the heart stops beating, organs begin to swell, collapsing blood vessels and blocking circulation, he said. Yet circulation was restored and organs in the deceased pigs that received OrganEx treatment appeared functional at the level of cells and tissue.

"Under the microscope, it was difficult to tell the difference between a healthy organ and one which had been treated with OrganEx technology after death," Vrselja said.

As in the 2019 experiment, the researchers also found that cellular activity in some areas of the brain had been restored, though no organized electrical activity that would indicate consciousness was detected during any part of the experiment.

The team was especially surprised to observe involuntary and spontaneous muscular movements in the head and neck areas when they evaluated the treated animals, which remained anesthetized through the entire six-hour experiment. These movements indicate the preservation of some motor functions, Sestan said.

The researchers stressed that additional studies are necessary to understand the apparently restored motor functions in the animals, and that rigorous ethical review from other scientists and bioethicists is required.

The experimental protocols for the latest study were approved by Yale's Institutional Animal Care and Use Committee and guided by an external advisory and ethics committee.

The OrganEx technology could eventually have several potential applications, the authors said. For instance, it could extend the life of organs in human patients and expand the availability of donor organs for transplant. It might also be able to help treat organs or tissue damaged by ischemia during heart attacks or strokes.

"There are numerous potential applications of this exciting new technology," said Stephen Latham, director of the Yale Interdisciplinary Center for Bioethics. "However, we need to maintain careful oversight of all future studies, particularly any that include perfusion of the brain."

Read more at Science Daily

Aug 2, 2022

Scientists reveal distribution of dark matter around galaxies 12 billion years ago -- further back in time than ever before

A collaboration led by scientists at Nagoya University in Japan has investigated the nature of dark matter surrounding galaxies seen as they were 12 billion years ago, billions of years further back in time than ever before. Their findings, published in Physical Review Letters, offer the tantalizing possibility that the fundamental rules of cosmology may differ when examining the early history of our universe.

Seeing something that happened such a long time ago is difficult. Because of the finite speed of light, we see distant galaxies not as they are today, but as they were billions of years ago. But even more challenging is observing dark matter, which does not emit light.

Consider a distant source galaxy, even further away than the galaxy whose dark matter one wants to investigate. The gravitational pull of the foreground galaxy, including its dark matter, distorts the surrounding space and time, as predicted by Einstein's theory of general relativity. As the light from the source galaxy travels through this distortion, it bends, changing the apparent shape of the galaxy. The greater the amount of dark matter, the greater the distortion. Thus, scientists can measure the amount of dark matter around the foreground galaxy (the "lens" galaxy) from the distortion.

However, beyond a certain point scientists encounter a problem. The galaxies in the deepest reaches of the universe are incredibly faint. As a result, the further away from Earth we look, the less effective this technique becomes. The lensing distortion is subtle and difficult to detect in most cases, so many background galaxies are necessary to detect the signal.

Most previous studies have remained stuck at the same limits. Unable to detect enough distant source galaxies to measure the distortion, they could only analyze dark matter from no more than 8-10 billion years ago. These limitations left open the question of the distribution of dark matter between this time and 13.7 billion years ago, around the beginning of our universe.

To overcome these challenges and observe dark matter from the furthest reaches of the universe, a research team led by Hironao Miyatake from Nagoya University, in collaboration with the University of Tokyo, the National Astronomical Observatory of Japan, and Princeton University, used a different source of background light, the microwaves released from the Big Bang itself.

First, using data from the observations of the Subaru Hyper Suprime-Cam Survey (HSC), the team identified 1.5 million lens galaxies using visible light, selected to be seen 12 billion years ago.

Next, to overcome the lack of galaxy light even further away, they employed microwaves from the cosmic microwave background (CMB), the radiation residue from the Big Bang. Using microwaves observed by the European Space Agency's Planck satellite, the team measured how the dark matter around the lens galaxies distorted the microwaves.

"Look at dark matter around distant galaxies?" asked Professor Masami Ouchi of the University of Tokyo, who made many of the observations. "It was a crazy idea. No one realized we could do this. But after I gave a talk about a large distant galaxy sample, Hironao came to me and said it may be possible to look at dark matter around these galaxies with the CMB."

"Most researchers use source galaxies to measure dark matter distribution from the present to eight billion years ago," added Assistant Professor Yuichi Harikane of the Institute for Cosmic Ray Research, University of Tokyo. "However, we could look further back into the past because we used the more distant CMB to measure dark matter. For the first time, we were measuring dark matter from almost the earliest moments of the universe."

After a preliminary analysis, the researchers soon realized that they had a large enough sample to detect the distribution of dark matter. Combining the large distant galaxy sample and the lensing distortions in CMB, they detected dark matter even further back in time, from 12 billion years ago. This is only 1.7 billion years after the beginning of the universe, and thus these galaxies are seen soon after they first formed.

"I was happy that we opened a new window into that era," Miyatake said. "12 billion years ago, things were very different. You see more galaxies that are in the process of formation than at the present; the first galaxy clusters are starting to form as well." Galaxy clusters comprise 100-1000 galaxies bound by gravity with large amounts of dark matter.

"This result gives a very consistent picture of galaxies and their evolution, as well as the dark matter in and around galaxies, and how this picture evolves with time," said Neta Bahcall, Eugene Higgins Professor of Astronomy, professor of astrophysical sciences, and director of undergraduate studies at Princeton University.

One of the most exciting findings of the researchers was related to the clumpiness of dark matter. According to the standard theory of cosmology, the Lambda-CDM model, subtle fluctuations in the CMB form pools of densely packed matter by attracting surrounding matter through gravity. This creates inhomogeneous clumps that form stars and galaxies in these dense regions. The group's findings suggest that their clumpiness measurement was lower than predicted by the Lambda-CDM model.

Miyatake is enthusiastic about the possibilities. "Our finding is still uncertain," he said. "But if it is true, it would suggest that the entire model is flawed as you go further back in time. This is exciting because if the result holds after the uncertainties are reduced, it could suggest an improvement of the model that may provide insight into the nature of dark matter itself."

"At this point, we will try to get better data to see if the Lambda-CDM model is actually able to explain the observations that we have in the universe," said Andrés Plazas Malagón, associate research scholar at Princeton University. "And the consequence may be that we need to revisit the assumptions that went into this model."

"One of the strengths of looking at the universe using large-scale surveys, such as the ones used in this research, is that you can study everything that you see in the resulting images, from nearby asteroids in our solar system to the most distant galaxies from the early universe. You can use the same data to explore a lot of new questions," said Michael Strauss, professor and chair of the Department of Astrophysical Sciences at Princeton University.

Read more at Science Daily

Computer modelling aims to inform restoration, conservation of coral reefs

A UBC Okanagan research team has created a computer modelling program to help scientists predict the effect of climate damage and eventual restoration plans on coral reefs around the globe.

This is a critical objective, says Dr. Bruno Carturan, because climate change is killing many coral species and can lead to the collapse of entire coral reef ecosystems. But, because they are so complex, it's logistically challenging to study the impact of devastation and regeneration of coral reefs.

Real-world experiments are impractical, as researchers would need to manipulate and disrupt large areas of reefs, along with coral colonies and herbivore populations, and then monitor the changes in structure and diversity over many years.

"Needless to say, conducting experiments that will disturb natural coral reefs is unethical and should be avoided, while using big aquariums is simply unfeasible," says Dr. Carturan, who recently completed his doctoral studies with the Irving K. Barber Faculty of Science. "For these reasons, no such experiments have ever been conducted, which has hindered our capacity to predict coral diversity and the associated resilience of the reefs."

For his latest research, published recently in Frontiers in Ecology and Evolution, Dr. Carturan used models to create 245 coral communities, each with a unique set of nine species and each occupying a surface of 25 square metres. The model represents coral colonies and different species of algae that grow, compete and reproduce together while also being impacted by climate.

Crucially, he notes, all the key components of the model, including species' traits such as competitive abilities and growth rates, are informed by pre-existing, real-world data from 800 species.

The research team simulated various scenarios -- including strong waves, a cyclone or intense heat -- and then measured each model reef's resilience taking note of damage, recovery time and the quality of the habitat 10 years after the disturbance.

By running so many scenarios with computer modelling, the team found that more diverse communities -- those with species having highly dissimilar traits -- were most resilient. They were better at recovering from damage and had greater habitat quality 10 years after the disturbances.

"More diverse communities are more likely to have certain species that are very important for resilience," Dr. Carturan explains. "These species have particular traits -- they are morphologically complex, competitive and with a good capacity to recover. When present in a community, these species maintained or even increased the quality of the habitat after the disturbance. Contrastingly, communities without these species were often dominated by harmful algae at the end."

Coral diversity determines the strength and future health of coral reefs, he adds. Coral species are the foundation of coral reef ecosystems because their colonies form the physical habitat where thousands of fish and crustaceans live. Among those are herbivores, such as parrotfish and surgeonfish, which maintain the coral habitat by eating the algae. Without herbivores, the algae would kill many coral colonies, causing the coral habitat to collapse, destroying its many populations.

"What is unique with our study is that our results apply to most coral communities in the world. By measuring the effect of diversity on resilience in more than 245 different coral communities, the span of diversity likely overlaps the actual coral diversity found in most reefs."

At the same time, the study provides a framework to successfully manage these ecosystems and help with coral reef restoration by revealing how the resilience of coral communities can be managed by establishing colonies of species with complementary traits.

Looking forward, there are other questions the model can help answer. For instance, the coral species vital for resilience are also the most affected by climate change and might not be able to recover if strong climatic heatwaves become too frequent.

Read more at Science Daily

Affordable and sustainable alternative to lithium-ion batteries proposed

Concerns regarding scarcity, high prices, and safety regarding the long-term use of lithium-ion batteries has prompted a team of researchers from Rensselaer Polytechnic Institute to propose a greener, more efficient, and less expensive energy storage alternative.

In research published recently in Proceedings of the National Academy of Sciences (PNAS), corresponding author Nikhil Koratkar, the John A. Clark and Edward T. Crossan Professor of Engineering at Rensselaer, and his team, assert that calcium ions could be used as an alternative to lithium-ions in batteries because of its abundance and low cost.

"The vast majority of rechargeable battery products are based on lithium-ion technology, which is the gold standard in terms of performance," said Dr. Koratkar. "However, the Achilles' heel for lithium-ion technology is cost. Lithium is a limited resource on the planet, and its price has increased drastically in recent years. We are working on an inexpensive, abundant, safe, and sustainable battery chemistry that uses calcium ions in an aqueous, water-based electrolyte."

While the larger size and higher charge density of calcium ions relative to lithium impairs diffusion kinetics and cyclic stability, Dr. Koratkar and his team offer oxide structures containing big open spaces (heptagonal and hexagonal channels) as a prospective solution. In their work, an aqueous calcium-ion battery is demonstrated using orthorhombic and trigonal polymorphs of molybdenum vanadium oxide (MoVO) as a host for calcium ions.

"The calcium ion is divalent, and hence one ion insertion will deliver two electrons per ion during battery operation," explains Dr. Koratkar. "This allows for a highly efficient battery with reduced mass and volume of calcium ions. However, the higher ionic charge and the larger size of calcium ions relative to lithium makes it very challenging to insert calcium ions into the battery electrodes. We overcome this problem by developing a special class of materials called molybdenum vanadium oxides that contain large hexagonal and heptagonal shaped channels or tunnels that run through the material."

The team demonstrated that calcium ions can be rapidly inserted and extracted from the material, with these tunnels acting as "conduits" for reversible and fast ion transport and the findings indicate that MoVO provides one of the best performances reported to date for the storage of calcium ions.

Read more at Science Daily

Why breast-fed premature infants have a healthier gut than formula-fed ones

Human breastmilk has long been considered "liquid gold" among clinicians treating premature infants in a newborn intensive care unit (NICU). Breastmilk-fed "preemies" are healthier, on average, than those fed formula. Why is that true, however, has remained a mystery.

New research from the University of Maryland School of Medicine's (UMSOM) Institute for Genome Sciences (IGS), published online in the journal mBio in June found it is not just the content of breastmilk that makes the difference. It is also the way the babies digest it.

The research, led by Bing Ma, PhD, Assistant Professor of Microbiology and Immunology at UMSOM and a researcher at IGS, discovered a strain of the Bifidobacterium breve bacteria or B. breve in the gut of breastfed babies who received higher volumes of breastmilk than their counterparts. Those preemies had better nutrient absorption because they developed an intact intestinal wall, one week after birth. B. breve was much less prevalent in both formula-fed babies and breastfed babies with "leaky gut." Babies with leaky gut do not develop a barrier to protect against bacteria and digested food from getting into the bloodstream. For the first time, the team also found that the way B. breve metabolizes breastmilk keeps breastfed babies healthier and allows them to gain weight by strengthening their underdeveloped intestinal barrier.

An immature or "leaky" gut can lead to necrotizing enterocolitis (NEC), which is the third leading cause of newborn death in United States and worldwide. In fact, NEC impacts up to 10 percent of premature babies with a devasting mortality rate as high as 50 percent.

"Our discovery could lead to promising and practical clinical interventions to strengthen the babies' gut and, therefore, increase survival rates of the most vulnerable preemies," said Dr. Ma.

Bifidobacterium in the gut or microbiome has long been known to have health benefits. It includes a diverse set of strains that have very different properties. Some strains are only found in adults; some are mostly in adolescence. One strain, Bifidobacterium infantis, has been seen predominantly in full-term infants.

The researchers followed 113 premature babies who were born between 24 and 32 weeks' gestation. This study found Bifidobacterium breve (B. breve) only in preemies who had improved gut barrier function within one week after birth. Dr. Ma and her colleagues discovered that Bifidobacterium breve is genetically equipped to digest nutrients within the cell membrane rather than the more typical external digestion process in which bacteria secrete digestive enzymes onto nutrients to break them down.

At the most basic level, the gut microbiome in these breastfed preemies with more B. breve metabolizes carbohydrates differently than it does formula. The researchers say they hypothesize that this process of metabolism then strengthens and matures the intestinal barrier faster, protecting fragile newborns from disease.

"We now know that it is not the breastmilk alone that helps preemies develop their intestinal barrier faster," Dr. Ma said. "We will need to find the best way to prophylactically administer B. breve early in life, rather than rely on transmission from breastmilk or even the mother's gut or vaginal microbiota during the birthing process. This is especially critical in formula-fed preemies."

Dr. Ma said that more studies are needed to determine if the B. breve originated in the breastmilk, gut, mother's vagina, or even environment.

Read more at Science Daily

Aug 1, 2022

Modeling reveals how dwarf planet Ceres powers unexpected geologic activity

For a long time, our view of Ceres was fuzzy, said Scott King, a geoscientist in the Virginia Tech College of Science. A dwarf planet and the largest body found in the asteroid belt -- the region between Jupiter and Mars speckled with hundreds of thousands of asteroids -- Ceres had no distinguishable surface features in existing telescopic observations from Earth.

Then, in 2015, the hazy orb that was Ceres came into view. That view was stunning to scientists such as King. Data and images collected by NASA's Dawn mission gave a clearer picture of the surface, including its composition and structures, which revealed unexpected geologic activity.

Scientists had seen the general size of Ceres in earlier observations. It was so small it was assumed to be inactive. Instead, Dawn discovered a large plateau on one side of Ceres that covered a fraction of the dwarf planet, similar to what a continent might take up on Earth. Surrounding it were fractures in rocks clustered in one location. And there were visible traces of an ocean world: deposits all over the surface where minerals had condensed as water evaporated -- the mark of a freezing ocean.

A professor in the Department of Geosciences, King, who mostly studies larger bodies such as planets, wanted to know how a body as small as Ceres could generate the heat needed to power that kind of geological activity and account for the surface features picked up by Dawn.

Through modeling, he and a team of scientists from multiple universities as well as the United States Geological Survey and the Planetary Science Institute found that the decay of radioactive elements within Ceres's interior could keep it active. Their findings were recently published in American Geophysical Union Advances.

King's study of big planets such as Earth, Venus, and Mars had always shown him that planets start out hot. The collision between objects that form a planet creates that initial heat. Ceres, by contrast, never got big enough to become a planet and generate heat the same way, King said. To learn how it could still generate enough heat to power geologic activity, he used theories and computational tools previously applied to bigger planets to study Ceres's interior, and he looked for evidence that could support his models in data returned by the Dawn mission.

The team's model of the dwarf planet's interior showed a unique sequence: Ceres started out cold and heated up because of the decay of radioactive elements such as uranium and thorium -- which was alone enough to power its activity -- until the interior became unstable.

"What I would see in the model is, all of a sudden, one part of the interior would start heating up and would be moving upward and then the other part would be moving downward," King said.

That instability could explain some of the surface features that had formed on Ceres, as revealed by the Dawn mission. The large plateau had formed on only one side of Ceres with nothing on the other side, and the fractures were clustered in a single location around it. The concentration of features in one hemisphere signaled to King that instability had occurred and had left a visible impact.

"It turned out that you could show in the model that where one hemisphere had this instability that was rising up, it would cause extension at the surface, and it was consistent with these patterns of fractures," King said.

Based on the team's model, Ceres didn't follow a planet's typical pattern of hot first and cool second, with its own pattern of cool, hot, and cool again. "What we've shown in this paper is that radiogenic heating all on its own is enough to create interesting geology," King said.

He sees similarities to Ceres in the moons of Uranus, which a study commissioned by NASA and the National Science Foundation recently deemed high priority for a major robotic mission. With additional improvements to the model, he looks forward to exploring their interiors as well.

Read more at Science Daily

New discovery of panda species which may have been Europe's last

Lumbering through the forested wetlands of Bulgaria around six million years ago, a new species of panda has been uncovered by scientists who state it is currently the last known and "most evolved" European giant panda.

Unearthed from the bowels of the Bulgarian National Museum of Natural History, two fossils of teeth originally found in the eastern European nation in the late 1970s, provide new evidence of a sizable relative of the modern giant panda. Unlike today's iconic black and white bear however, it was not reliant on purely bamboo.

"Although not a direct ancestor of the modern genus of the giant panda, it is its close relative," explains the Museum's Professor Nikolai Spassov, whose findings are today published in the peer-reviewed Journal of Vertebrate Paleontology.

"This discovery shows how little we still know about ancient nature and demonstrates also that historic discoveries in paleontology can lead to unexpected results, even today."

The upper carnassial tooth, and an upper canine, were originally cataloged by paleontologist Ivan Nikolov, who added them to the museum's trove of fossilized treasures when they were unearthed in northwestern Bulgaria. This new species is named Agriarctos nikolovi in his honor.

"They had only one label written vaguely by hand," recalls Professor Spassov. "It took me many years to figure out what the locality was and what its age was. Then it also took me a long time to realize that this was an unknown fossil giant panda."

The coal deposits in which the teeth were found -- which have imbued them with a blackened hue -- suggest that this ancient panda inhabited forested, swampy regions.

There, during the Miocene epoch, it likely consumed a largely vegetarian diet -- but not purely reliant on bamboo!

Fossils of the staple grass that sustains the modern panda are rare in the European -- and, especially, in the Bulgarian late Miocene -- fossil record and the cusps of the teeth do not appear strong enough to crush the woody stems.

Instead, it likely fed on softer plant materials -- aligning with the general trend toward increased reliance on plants in this group's evolutionary history.

Sharing their environment with other large predators likely drove the giant panda lineage toward vegetarianism.

"The likely competition with other species, especially carnivores and presumably other bears, explains the closer food specialization of giant pandas to vegetable food in humid forest conditions," states Professor Spassov.

The paper speculates that A. nikolovi's teeth nonetheless provided ample defense against predators. In addition, the canines are comparable in size to those of the modern panda, suggesting that they belonged to a similarly sized or only slightly smaller animal.

The authors propose that A. nikolovi may have become extinct as a result of climate change, probably because of the 'Messinian salinity crisis' -- an event in which the Mediterranean basin dried up, significantly altering the surrounding terrestrial environments.

"Giant pandas are a very specialized group of bears," Professor Spassov adds. "Even if A. niklovi was not as specialized in habitats and food as the modern giant panda, fossil pandas were specialized enough and their evolution was related to humid, wooded habitats. It is likely that climate change at the end of the Miocene in southern Europe, leading to aridification, had an adverse effect on the existence of the last European panda."

Co-author Qigao Jiangzuo, from Peking University, China, was primarily responsible in helping to narrow down the identity of this strange beast to belonging to the Ailuropodini -- a tribe within the Ursidae bear family. While this group of animals is best known by its only living representative, the giant panda, they once ranged across Europe and Asia. Intriguingly, the authors propose two potential pathways for the distribution of this group.

Read more at Science Daily

Cloud study demystifies impact of aerosols

Aerosol particles in the atmosphere have a bigger impact on cloud cover -- but less effect on cloud brightness -- than previously thought, new research shows.

Aerosols are tiny particles suspended in the atmosphere, and they play a key role in the formation of clouds.

With aerosols increasing due to human activities, numerous assessments by the Intergovernmental Panel on Climate Change (IPCC) have suggested they could have an important impact on climate change because clouds reflect sunlight and therefore keep temperatures cooler.

However, this cooling impact of aerosols on clouds is difficult to measure, and this has led to significant uncertainty climate change projections.

The new study -- led by the University of Exeter, with national and international academic partners and the UK's Met Office -- used the 2014 Icelandic volcano eruption to investigate this.

"This massive aerosol plume in an otherwise near-pristine environment provided an ideal natural experiment to quantify cloud responses to aerosol changes, namely the aerosol's fingerprint on clouds" said lead author Dr Ying Chen.

"Our analysis shows that aerosols from the eruption increased cloud cover by approximately 10%.

"Based on these findings, we can see that more than 60% of the climate cooling effect of cloud-aerosol interactions is caused by increased cloud cover.

"Volcanic aerosols also brightened clouds by reducing water droplet size, but this had a significantly smaller impact than cloud-cover changes in reflecting solar radiation."

Previous models and observations suggested this brightening accounted for the majority of the cooling caused by cloud-aerosol interactions.

Water droplets usually form in the atmosphere around aerosol particles, so a higher concentration of these particles makes it easier for cloud droplets to form.

However, as these cloud droplets are smaller and more numerous, the resulting clouds can hold more water before rainfall occurs -- so, more aerosols in the atmosphere can lead to more cloud cover but less rain.

The study used satellite data and computer learning to study cloud cover and brightness.

It used 20 years of satellite cloud images from two different satellite platforms from the region to compare the periods before and after the volcano eruption.

The findings will provide observational evidence of aerosols' climate impacts to improve the models used by scientists to predict climate change.

Jim Haywood, Professor of Atmospheric Science at the University of Exeter and part of the Global Systems Institute, and a Met Office Research Fellow, said: "Our earlier work had showed that model simulations could be used to disentangle the relative contribution of aerosol-cloud-climate impacts and potentially confounding meteorological variability.

"This work is radically different as it does not rely on models; it uses state-of-the-art machine learning techniques applied to satellite observations to simulate what the cloud would look like in the absence of the aerosols.

"Clear differences are observed between the predicted and observed cloud properties which can be used to assess aerosol-cloud-climate impacts."

Read more at Science Daily

Building bricks from waste materials

Firing bricks and making mortar and cement is very costly, but organic chemists at Flinders University are working on more sustainable alternatives -- focusing on building materials made from waste products.

In another move into the circular economy, researchers from the Flinders Chalker Lab have used low-cost feedstocks to make lightweight but durable polymer building blocks which can be bonded together with an adhesive-free chemical reaction.

Their latest study tested the strength of these materials and explored ways they can be reinforced in construction.

Matthew Flinders Professor of Chemistry, Justin Chalker, says the need to develop sustainable building materials is increasingly important, with cement, iron and steel production accounting for more than 15% of global CO2 emissions each year.

"In this study, we tested a new type of brick we can make from waste cooking oil, mixed with sulfur and dicyclopentadiene (DCPD). Both sulfur and DCPD are byproducts of petroleum refining.

"The bricks bond together without mortar upon application of a trace amount of amine catalyst.

"All the starting materials are plentiful and can be classified as industrial waste.

"This research is part of a larger effort to move towards a sustainable built environment," says project leader Professor Chalker.

The Chalker Lab's new polymer research team at Flinders University's College of Science and Engineering is collaborating with Clean Earth Technologies for further development. scale-up and possible commercialisation.

The latest study, published as a cover feature in a special issue on Sustainability in the journal Macromolecular Chemistry and Physics, expanded the research to test the new bricks' mechanical properties and look at ways to reinforce them in construction, including with carbon fibre fillers.

Chalker Lab research associate Dr Maximilian Mann says as well as repurposing waste materials into value-added construction materials, the polymer bricks' sulfur-sulfur bond means they can be bound together without mortar like traditional building method.

"The bonding in this novel catalytic process is very strong, producing a sustainable construction material with its own mortar which will potentially streamline construction," Dr Mann says.

Read more at Science Daily

Jul 31, 2022

A window of opportunity for methane to slip by nature's filters

Warmer oceans can lead to large amounts of methane being released from the seabeds, which may amplify climate warming. A new study develops a method to understand the role of microorganisms in increasing emissions of methane from seabeds.

Vast reservoirs of the potent greenhouse gas methane are stored beneath the sea in a solid ice-like combination with water. This solid is known as methane hydrate. For over three decades, various concerns have been raised that warming the seafloor may cause this methane to be rapidly released, perhaps even reaching the atmosphere where it would cause further climate warming. Happily, this methane hydrate is mostly located beneath the seafloor and under hundreds of meters of seawater. Even if warming melts this methane hydrate and releases methane gas, the natural microbial filters present in the seafloor were expected to destroy most of the methane before it ever reaches the open seawater.

However, there have been some gaps in our knowledge of the relevant seafloor processes. In particular, can seafloor warming be rapid enough that methane hydrate could melt so fast that the released methane would overwhelm and ultimately bypass the natural microbial filters? "The microbial filter layer in the sediment -- we call it the 'sulfate-methane transition', where methane is removed -- is somewhat delicate," explains Assistant Professor Christian Stranne at the Department of Geological Sciences, Stockholm University. "The filter layer takes many years to form and reach peak methane-consuming efficiency. The filter is a living thing, made of microorganisms that consume methane under anaerobic (no-oxygen) conditions. The filter also moves up and down within the sediment, depending on the rate at which methane is reaching it."

In a new study, just published in Communications Earth and Environment, Stranne and colleagues from Stockholm University and Linnaeus University have combined a new model of the biological behaviour and vertical movements of this microbial filter with existing models of seafloor sediments' physical behaviour. The physical parts of the model include processes such as how cracks form and methane can move up thorough the sediment after methane hydrates melt.

Christian Stranne explains: "Imagine that the amount of methane rising through the sediment suddenly increases, as might happen if methane hydrate begins to melt faster. It can take decades for the filter to adjust itself to consume methane at the new rate. Our new study shows that during the time that the filter is not reestablished, substantial methane can leak past the filter, and into the ocean water."

Despite this "window of opportunity," methane from melting hydrates that reaches the seawater faces further methane-destroying processes. These processes make it nearly impossible for substantial methane from methane hydrate melting to reach the atmosphere. However, methods as demonstrated in this study can be applied to other regions where seafloor-released methane is much shallower and is more likely to reach the atmosphere, such as the Arctic continental shelves, according to Christian Stranne.

"Methane hydrates are a massive storehouse of carbon, so it remains important to understand how they interact with ocean changes, and potentially, the atmosphere, over long and, in the case of our study, rather short timescales. We now know that there is indeed a possible process for melting methane hydrates to temporarily bypass what was previously thought to be a strong filter in the sediment," says Christian Stranne.

The warming rate is, however, of great importance: "Our results suggest that if our oceans warm at a pace significantly lower than 1 °C per 100 years, the filter can keep up with the pace and remain highly efficient. Unfortunately, we see higher warming rates than that in some of our oceans."

Read more at Science Daily