Jul 8, 2023

Webb locates dust reservoirs in two supernovae

Researchers using NASA's James Webb Space Telescope have made major strides in confirming the source of dust in early galaxies. Observations of two Type II supernovae, Supernova 2004et (SN 2004et) and Supernova 2017eaw (SN 2017eaw), have revealed large amounts of dust within the ejecta of each of these objects. The mass found by researchers supports the theory that supernovae played a key role in supplying dust to the early universe.

Dust is a building block for many things in our universe -- planets in particular. As dust from dying stars spreads through space, it carries essential elements to help give birth to the next generation of stars and their planets. Where that dust comes from has puzzled astronomers for decades. One significant source of cosmic dust could be supernovae -- after the dying star explodes, its leftover gas expands and cools to create dust.

"Direct evidence of this phenomenon has been slim up to this point, with our capabilities only allowing us to study the dust population in one relatively nearby supernova to date -- Supernova 1987A, 170,000 light-years away from Earth," said lead author Melissa Shahbandeh of Johns Hopkins University and the Space Telescope Science Institute in Baltimore, Maryland. "When the gas cools enough to form dust, that dust is only detectable at mid-infrared wavelengths provided you have enough sensitivity."

For supernovae more distant than SN 1987A like SN 2004et and SN 2017eaw, both in NGC 6946 about 22 million light-years away, that combination of wavelength coverage and exquisite sensitivity can only be obtained with Webb's MIRI (Mid-Infrared Instrument).

The Webb observations are the first breakthrough in the study of dust production from supernovae since the detection of newly formed dust in SN 1987A with the Atacama Large Millimeter/submillimeter Array (ALMA) telescope nearly a decade ago.

Another particularly intriguing result of their study isn't just the detection of dust, but the amount of dust detected at this early stage in the supernova's life. In SN 2004et, the researchers found more than 5,000 Earth masses of dust.

"When you look at the calculation of how much dust we're seeing in SN 2004et especially, it rivals the measurements in SN 1987A, and it's only a fraction of the age," added program lead Ori Fox of the Space Telescope Science Institute. "It's the highest dust mass detected in supernovae since SN 1987A."

Observations have shown astronomers that young, distant galaxies are full of dust, but these galaxies are not old enough for intermediate mass stars, like the Sun, to have supplied the dust as they age. More massive, short-lived stars could have died soon enough and in large enough numbers to create that much dust.

While astronomers have confirmed that supernovae produce dust, the question has lingered about how much of that dust can survive the internal shocks reverberating in the aftermath of the explosion. Seeing this amount of dust at this stage in the lifetimes of SN 2004et and SN 2017eaw suggests that dust can survive the shockwave -- evidence that supernovae really are important dust factories after all.

Researchers also note that the current estimations of the mass may be the tip of the iceberg. While Webb has allowed researchers to measure dust cooler than ever before, there may be undetected, colder dust radiating even farther into the electromagnetic spectrum that remains obscured by the outermost layers of dust.

The researchers emphasized that the new findings are also just a hint at newfound research capabilities into supernovae and their dust production using Webb, and what that can tell us about the stars from which they came.

"There's a growing excitement to understand what this dust also implies about the core of the star that exploded," Fox said. "After looking at these particular findings, I think our fellow researchers are going to be thinking of innovative ways to work with these dusty supernovae in the future."

Read more at Science Daily

Queensland native forestry can help achieve global environment goals

Research conducted by The University of Queensland has revealed that Queensland native forestry, including timber harvesting, could actually help conserve biodiversity and mitigate climate risks.

Dr Tyron Venn from UQ's School of Agriculture and Food Sustainability reviewed more than 350 publications, studying the ecological and economic impacts of Queensland native forest management, which includes everything from fire management to timber harvesting.

"Stopping forestry in Queensland's native forests may sound like a positive outcome for the environment, but the research suggests that it would further shift our impacts offshore and increase carbon emissions, while generating little benefit for biodiversity conservation within Australia," Dr Venn said.

Since the 1990s, Australia's annual harvest of native hardwood sawlogs has dropped by 2.2 million cubic metres, as large areas of state-owned native forests have been declared National Parks or other types of conservation reserves in which harvesting is not allowed.

"Over the same time period, imports of hardwood products from less-well managed forests in Asia and the Pacific increased by a similar amount," Dr Venn said.

"In many developing countries, large international timber companies operate with disregard for the environment and often have negative impacts on traditional forest communities."

"Without realising it, many Australians buy products made with foreign timbers and threaten conservation efforts for the orangutan, Malayan tiger, Asian sun bear and Asian tapir.

The research found that Queensland's low-intensity forestry management techniques are informed by science to minimise environmental impacts.

Queensland law allows selection harvesting in some of the state's public and private native forests, which typically removes 10 to 20 trees per hectare every 20 to 40 years.

Strict rules regulate how this is conducted, such as by requiring minimum retention of trees of different sizes, including large old trees with hollows.

"Selection harvesting can restore wildlife habitat, promote and conserve floristic diversity and improve the resilience of large trees against climate change and bushfire," Dr Venn said.

Dr Venn said forestry is the twenty-fifth most important threat to biodiversity in Australia, and forestry in Queensland impacts only 0.8 per cent of Australia's 1,795 threatened species.

"There are 24 more important threats we should be focused on, including invasive weeds, invasive predators, urban development, and reduced fire frequency or intensity" he said.

Dr Venn said Queensland should continue to manage some of its forests for wood production, as recommended by the Intergovernmental Panel on Climate Change (IPCC).

"The IPCC has long argued that sustainably managing forests to produce timber, fibre and energy will generate the largest carbon sequestration benefit from forests," he said.

"If Queensland reduced its native forestry in the near future, the knock-on effect would be negative impacts on global efforts to conserve biodiversity and reduce carbon emissions due to increased consumption of timber imports and carbon polluting substitutes.

Read more at Science Daily

Artificial cells demonstrate that 'life finds a way'

"Listen, if there's one thing the history of evolution has taught us is that life will not be contained. Life breaks free. It expands to new territories, and it crashes through barriers painfully, maybe even dangerously, but . . . life finds a way," said Ian Malcolm, Jeff Goldblum's character in Jurassic Park, the 1993 science fiction film about a park with living dinosaurs.

You won't find any Velociraptors lurking around evolutionary biologist Jay T. Lennon's lab; however, Lennon, a professor in the College of Arts and Sciences Department of Biology at Indiana University Bloomington, and his colleagues have found that life does indeed find a way. Lennon's research team has been studying a synthetically constructed minimal cell that has been stripped of all but its essential genes. The team found that the streamlined cell can evolve just as fast as a normal cell -- demonstrating the capacity for organisms to adapt, even with an unnatural genome that would seemingly provide little flexibility.

"It appears there's something about life that's really robust," says Lennon. "We can simplify it down to just the bare essentials, but that doesn't stop evolution from going to work."

For their study, Lennon's team used the synthetic organism, Mycoplasma mycoides JCVI-syn3B -- a minimized version of the bacterium M. mycoides commonly found in the guts of goats and similar animals. Over millennia, the parasitic bacterium has naturally lost many of its genes as it evolved to depend on its host for nutrition. Researchers at the J. Craig Venter Institute in California took this one step further. In 2016, they eliminated 45 percent of the 901 genes from the natural M. mycoides genome -- reducing it to the smallest set of genes required for autonomous cellular life. At 493 genes, the minimal genome of M. mycoides JCVI-syn3B is the smallest of any known free-living organism. In comparison, many animal and plant genomes contain more than 20,000 genes.

In principle, the simplest organism would have no functional redundancies and possess only the minimum number of genes essential for life. Any mutation in such an organism could lethally disrupt one or more cellular functions, placing constraints on evolution. Organisms with streamlined genomes have fewer targets upon which positive selection can act, thus limiting opportunities for adaptation.

Although M. mycoides JCVI-syn3B could grow and divide in laboratory conditions, Lennon and colleagues wanted to know how a minimal cell would respond to the forces of evolution over time, particularly given the limited raw materials upon which natural selection could operate as well as the uncharacterized input of new mutations.

"Every single gene in its genome is essential," says Lennon in reference to M. mycoides JCVI-syn3B. "One could hypothesize that there is no wiggle room for mutations, which could constrain its potential to evolve."

The researchers established that M. mycoides JCVI-syn3B, in fact, has an exceptionally high mutation rate. They then grew it in the lab where it was allowed to evolve freely for 300 days, equivalent to 2000 bacterial generations or about 40,000 years of human evolution.

The next step was to set up experiments to determine how the minimal cells that had evolved for 300 days performed in comparison to the original, non-minimal M. mycoides as well as to a strain of minimal cells that hadn't evolved for 300 days. In the comparison tests, the researchers put equal amounts of the strains being assessed together in a test tube. The strain better suited to its environment became the more common strain.

They found that the non-minimal version of the bacterium easily outcompeted the unevolved minimal version. The minimal bacterium that had evolved for 300 days, however, did much better, effectively recovering all of the fitness that it had lost due to genome streamlining. The researchers identified the genes that changed the most during evolution. Some of these genes were involved in constructing the surface of the cell, while the functions of several others remain unknown.

Read more at Science Daily

Jul 7, 2023

Why the day is 24 hours long: Astrophysicists reveal why Earth's day was a constant 19.5 hours for over a billion years

A team of astrophysicists at the University of Toronto (U of T) has revealed how the slow and steady lengthening of Earth's day caused by the tidal pull of the moon was halted for over a billion years.

They show that from approximately two billion years ago until 600 million years ago, an atmospheric tide driven by the sun countered the effect of the moon, keeping Earth's rotational rate steady and the length of day at a constant 19.5 hours.

Without this billion-year pause in the slowing of our planet's rotation, our current 24-hour day would stretch to over 60 hours.

The study describing the result, 'Why the day is 24 hours long; the history of Earth's atmospheric thermal tide, composition, and mean temperature,' was published today in the journal Science Advances. Drawing on geological evidence and using atmospheric research tools, the scientists show that the tidal stalemate between the sun and moon resulted from the incidental but enormously consequential link between the atmosphere's temperature and Earth's rotational rate.

The paper's authors include Norman Murray, a theoretical astrophysicist with U of T's Canadian Institute for Theoretical Astrophysics (CITA); graduate student Hanbo Wu, CITA and Department of Physics, U of T; Kristen Menou, David A. Dunlap Department of Astronomy & Astrophysics and Department of Physical & Environmental Sciences, University of Toronto Scarborough; Jeremy Laconte, Laboratoire d'astrophysique de Bordeaux and and a former CITA postdoctoral fellow; and Christopher Lee, Department of Physics, U of T.

When the moon first formed some 4.5 billion years ago, the day was less than 10 hours long. But since then, the moon's gravitational pull on the Earth has been slowing our planet's rotation, resulting in an increasingly longer day. Today, it continues to lengthen at a rate of some 1.7 milliseconds every century.

The moon slows the planet's rotation by pulling on Earth's oceans, creating tidal bulges on opposite sides of the planet that we experience as high and low tides. The gravitational pull of the moon on those bulges, plus the friction between the tides and the ocean floor, acts like a brake on our spinning planet.

"Sunlight also produces an atmospheric tide with the same type of bulges," says Murray. "The sun's gravity pulls on these atmospheric bulges, producing a torque on the Earth. But instead of slowing down Earth's rotation like the moon, it speeds it up."

For most of Earth's geological history, the lunar tides have overpowered the solar tides by about a factor of ten; hence, the Earth's slowing rotational speed and lengthening days.

But some two billion years ago, the atmospheric bulges were larger because the atmosphere was warmer and because its natural resonance -- the frequency at which waves move through it -- matched the length of day.

The atmosphere, like a bell, resonates at a frequency determined by various factors, including temperature. In other words, waves -- like those generated by the enormous eruption of the volcano Krakatoa in Indonesia in 1883 -- travel through it at a velocity determined by its temperature. The same principle explains why a bell always produces the same note if its temperature is constant.

Throughout most of Earth's history that atmospheric resonance has been out of sync with the planet's rotational rate. Today, each of the two atmospheric "high tides" take 22.8 hours to travel around the world; because that resonance and Earth's 24-hour rotational period are out of sync, the atmospheric tide is relatively small.

But during the billion-year period under study, the atmosphere was warmer and resonated with a period of about 10 hours. Also, at the advent of that epoch, Earth's rotation, slowed by the moon, reached 20 hours.

When the atmospheric resonance and length of day became even factors -- ten and 20 -- the atmospheric tide was reinforced, the bulges became larger and the sun's tidal pull became strong enough to counter the lunar tide.

"It's like pushing a child on a swing," says Murray. "If your push and the period of the swing are out of sync, it's not going to go very high. But, if they're in sync and you're pushing just as the swing stops at one end of its travel, the push will add to the momentum of the swing and it will go further and higher. That's what happened with the atmospheric resonance and tide."

Along with geological evidence, Murray and his colleagues achieved their result using global atmospheric circulation models (GCMs) to predict the atmosphere's temperature during this period. The GCMs are the same models used by climatologists to study global warming. According to Murray, the fact they worked so well in the team's research is a timely lesson.

"I've talked to people who are climate change skeptics who don't believe in the global circulation models that are telling us we're in a climate crisis," says Murray. "And I tell them: We used these global circulation models in our research, and they got it right. They work."

Despite its remoteness in geological history, the result adds additional perspective to the climate crisis. Because the atmospheric resonance changes with temperature, Murray points out that our current warming atmosphere could have consequences in this tidal imbalance.

Read more at Science Daily

Fossils reveal how ancient birds molted their feathers -- which could help explain why ancestors of modern birds survived when all the other dinosaurs died

Every bird you've ever seen -- every robin, every pigeon, every penguin at the zoo -- is a living dinosaur. Birds are the only group of dinosaurs that survived the asteroid-induced mass extinction 66 million years ago. But not all the birds alive at the time made it. Why the ancestors of modern birds lived while so many of their relatives died has been a mystery that paleontologists have been trying to solve for decades. Two new studies point to one possible factor: the differences between how modern birds and their ancient cousins molt their feathers.

Feathers are one of the key traits that all birds share. They're made of a protein called keratin, the same material as our fingernails and hair, and birds rely on them to fly, swim, camouflage, attract mates, stay warm, and protect against the sun's rays. But feathers are complex structures that can't be repaired, so as a means of keeping them in good shape, birds shed their feathers and grow replacements in a process called molting. Baby birds molt in order to lose their baby feathers and grow adult ones; mature birds continue to molt about once a year.

"Molt is something that I don't think a lot of people think about, but it is fundamentally such an important process to birds, because feathers are involved in so many different functions," says Jingmai O'Connor, associate curator of fossil reptiles at Chicago's Field Museum. "We want to know, how did this process evolve? How did it differ across groups of birds? And how has that shaped bird evolution, shaped the survivability of all these different clades?" Two of O'Connor's recent papers examine the molting process in prehistoric birds.

A paper in the journal Cretaceous Research published in May 2023 detailed the discovery of a cluster of feathers preserved in amber from a baby bird that lived 99 million years ago.

Today, baby birds are on a spectrum in terms of how developed they are when they're born and how much help they need from their parents. Altricial birds hatch naked and helpless; their lack of feathers means that their parents can more efficiently transmit body heat directly to the babies' skin. Precocial species, on the other hand, are born with feathers and are fairly self-sufficient.

All baby birds go through successive molts -- periods when they lose the feathers they have and grow in a new set of feathers, before eventually reaching their adult plumage. Molting takes a lot of energy, and losing a lot of feathers at once can make it hard for a bird to keep itself warm. As a result, precocial chicks tend to molt slowly, so that they keep a steady supply of feathers, while altricial chicks that can rely on their parents for food and warmth undergo a "simultaneous molt," losing all their feathers at roughly the same time.

The amber-preserved feathers in this study are the first definitive fossil evidence of juvenile molting, and they reveal a baby bird whose life history doesn't match any birds alive today. "This specimen shows a totally bizarre combination of precocial and altricial characteristics," says O'Connor, who was the first author of the paper alongside senior author Shundong Bi of the Indiana University of Pennsylvania. "All the body feathers are basically at the exact same stage in development, so this means that all the feathers started growing simultaneously, or near simultaneously." However, this bird was almost certainly part of a now-extinct group called the Enantiornithines, which O'Connor's previous work has shown were highly precocial.

O'Connor hypothesizes that the pressures of being a precocial baby bird that had to keep itself warm, while undergoing a rapid molt, might have been a factor in the ultimate doom of the Enantiornithines. "Enantiornithines were the most diverse group of birds in the Cretaceous, but they went extinct along with all the other non-avian dinosaurs," says O'Connor. "When the asteroid hit, global temperatures would have plummeted and resources would have become scarce, so not only would these birds have even higher energy demands to stay warm, but they didn't have the resources to meet them."

Meanwhile, an additional study published July 3 in Communications Biology by O'Connor and Field Museum postdoctoral researcher Yosef Kiat examines molting patterns in modern birds to better understand how the process first evolved.

In modern adult birds, molting usually happens once a year in a sequential process, in which they replace just a few of their feathers at a time over the course of a few weeks. That way, they're still able to fly throughout the molting process. Simultaneous molts in adult birds, in which all the flight feathers fall out at the same time and regrow within a couple weeks, are rarer and tend to show up in aquatic birds like ducks that don't absolutely need to fly in order to find food and avoid predators.

It's very rare to find evidence of molting in fossil birds and other feathered dinosaurs, and O'Connor and Kiat wanted to know why. "We had this hypothesis that birds with simultaneous molts, which occur in a shorter duration of time, will be less represented in the fossil record," says O'Connor -- less time spent molting means fewer opportunities to die during your molt and become a fossil showing signs of molting. To test their hypothesis, the researchers delved into the Field Museum's collection of modern birds.

"We tested more than 600 skins of modern birds stored in the ornithology collection of the Field Museum to look for evidence of active molting," says Kiat, the first author of the study. "Among the sequentially molting birds, we found dozens of specimens in an active molt, but among the simultaneous molters, we found hardly any."

While these are modern birds, not fossils, they provide a useful proxy. "In paleontology, we have to get creative, since we don't have complete data sets. Here, we used statistical analysis of a random sample to infer what the absence of something is actually telling us," says O'Connor. In this case, the absence of molting fossil birds, despite active molting being so prevalent in the sample of modern bird specimens, suggests that fossil birds simply weren't molting as often as most modern birds. They may have undergone a simultaneous molt, or they may not have molted on a yearly basis the way most birds today do.

Both the amber specimen and the study of molting in modern birds point to a common theme: prehistoric birds and feathered dinosaurs, especially ones from groups that didn't survive the mass extinction, molted differently from today's birds.

Read more at Science Daily

Why there are no kangaroos in Bali (and no tigers in Australia)

If you travel to Bali, you won't see a cockatoo, but if you go to the neighbouring island of Lombok, you will. The situation is similar with marsupials: Australia is home to numerous marsupial species, such as the kangaroo and the koala. The further west you go, the sparser they become. While you will find just two representatives of these typically Australian mammals on the Indonesian island of Sulawesi, you will search in vain for them on neighbouring Borneo. Australia, on the other hand, is not home to mammals that you will typically find in Asia, such as bears, tigers or rhinos.

This abrupt change in the composition of the animal world already caught the eye of the British naturalist and co-discoverer of evolutionary theory Alfred Russell Wallace, who travelled through the Indo-Australian Archipelago from 1854 to 1862 to collect animals and plants. He described an (invisible) biogeographical line running between Bali and Lombok and Borneo and Sulawesi that marked the westernmost distribution of Australian fauna.

Fascinating change of wildlife

Biodiversity researchers have long been fascinated by this abrupt change of creatures along the Wallace Line. How these distribution patterns came about, however, has not yet been clarified in detail.

One explanation is plate tectonics. Forty-five million years ago, the Australian Plate began to drift northwards and slid under the mighty Eurasian Plate. This brought two land masses closer together that had previously been far apart. It became easier for land creatures to colonise one continent from the other. Tectonic movements also gave rise to the creation of countless (volcanic) islands between the two continents, which animals and plants used as stepping stones to migrate westwards or eastwards.

More Asian animals in Australia than vice versa

But why more species found their way from Asia to Australia -- countless poisonous snakes, thorny lizards (Moloch horridus), hopping mice (Notomys sp.) or flying foxes bear witness to this -- than the other way round has been a mystery until now.

In order to better understand this asymmetrical vertebrate distribution along the Wallace Line, researchers led by Loïc Pellissier, Professor of Ecosystems and Landscape Evolution at ETH Zurich, have created a new model. It combines reconstructions of the climate, plate displacements between 30 million years ago and the present day and a comprehensive data set for around 20,000 birds, mammals, reptiles and amphibians that are recorded in the region today.

Climates in areas of origin decisive

In the latest issue of Science, the researchers now show that adaptations to the climates in the areas of origin are partly responsible for the uneven distribution of Asian and Australian faunal representatives on both sides of the Wallace Line.

In addition to plate tectonics, the environmental conditions that prevailed millions of years ago were decisive for the exchange between the two continents. Based on simulations, the researchers found that animals originating from Asia were more likely to "hop" across the Indonesian islands to reach New Guinea and northern Australia.

These islands featured a tropically humid climate, which they were comfortable with and had already adapted to. The Australian wildlife was different, having evolved in a cooler climate that had become increasingly drier over time, and was therefore less successful in gaining a foothold on the tropical islands than the fauna migrating from Asia.

The Asian climate thus favoured creatures that reached Australia via the tropical islands of the faunal region known as Wallacea, especially those that could tolerate a wide range of climates. This made it easier for them to settle on the new continent. "The historical context is crucial for understanding the biodiversity distribution patterns observed today and was the missing piece of the puzzle explaining the enigma of Wallace's line," says first author Alexander Skeels, a postdoctoral researcher in Pellissier's group.

Competitive advantages for tropical species

Traits of species that evolved in tropical habitats include faster growth and higher competitiveness to enable them to withstand the pressure of coexistence with many other species. In harsher climates, such as the colder and drier regions of Australia, organisms usually have to evolve special adaptations to cope with drought and heat stress. These include behavioural adaptations such as nocturnal activity and physiological adaptations to minimise water loss. "Many Australian frogs bury themselves in the ground and remain dormant for long periods for this reason," Skeels points out. "Something that is rare in tropical frogs."

The findings are important for the researchers: "They make it clear that we can only understand today's distribution patterns of biodiversity if we include the geological development and climatic conditions of prehistoric times in our considerations," says Pellissier.

The heritage of long past epochs has shaped the patterns of biodiversity right up to the present. It also helps us to understand why more species are found in the tropics today than in temperate latitudes. "To fully understand the distribution of biodiversity and the processes that maintain it in the present, we need to find out how it came about," says the researcher.

Read more at Science Daily

Global diet study challenges advice to limit high-fat dairy foods

Unprocessed red meat and whole grains can be included or left out of a healthy diet, according to a study conducted in 80 countries across all inhabited continents and published today in European Heart Journal, a journal of the European Society of Cardiology (ESC).1 Diets emphasising fruit, vegetables, dairy (mainly whole-fat), nuts, legumes and fish were linked with a lower risk of cardiovascular disease (CVD) and premature death in all world regions. The addition of unprocessed red meat or whole grains had little impact on outcomes.

"Low-fat foods have taken centre stage with the public, food industry and policymakers, with nutrition labels focused on reducing fat and saturated fat," said study author Dr. Andrew Mente of the Population Health Research Institute, McMaster University, Hamilton, Canada. "Our findings suggest that the priority should be increasing protective foods such as nuts (often avoided as too energy dense), fish and dairy, rather than restricting dairy (especially whole-fat) to very low amounts. Our results show that up to two servings a day of dairy, mainly whole-fat, can be included in a healthy diet. This is in keeping with modern nutrition science showing that dairy, particularly whole-fat, may protect against high blood pressure and metabolic syndrome."

The study examined the relationships between a new diet score and health outcomes in a global population. A healthy diet score was created based on six foods that have each been linked with longevity. The PURE diet included 2-3 servings of fruit per day, 2-3 servings of vegetables per day, 3-4 servings of legumes per week, 7 servings of nuts per week, 2-3 servings of fish per week, and 14 servings of dairy products (mainly whole fat but not including butter or whipped cream) per week. A score of 1 (healthy) was assigned for intake above the median in the group and a score of 0 (unhealthy) for intake at or below the median, for a total of 0 to 6. Dr. Mente explained: "Participants in the top 50% of the population -- an achievable level -- on each of the six food components attained the maximum diet score of six."

Associations of the score with mortality, myocardial infarction, stroke and total CVD (including fatal CVD and non-fatal myocardial infarction, stroke and heart failure) were tested in the PURE study which included 147,642 people from the general population in 21 countries. The analyses were adjusted for factors that could influence the relationships such as age, sex, waist-to-hip ratio, education level, income, urban or rural location, physical activity, smoking status, diabetes, use of statins or high blood pressure medications, and total energy intake.

The average diet score was 2.95. During a median follow-up of 9.3 years, there were 15,707 deaths and 40,764 cardiovascular events. Compared with the least healthy diet (score of 1 or less), the healthiest diet (score of 5 or more) was linked with a 30% lower risk of death, 18% lower likelihood of CVD, 14% lower risk of myocardial infarction and 19% lower risk of stroke. Associations between the healthy diet score and outcomes were confirmed in five independent studies including a total of 96,955 patients with CVD in 70 countries.

Dr. Mente said: "This was by far the most diverse study of nutrition and health outcomes in the world and the only one with sufficient representation from high-, middle- and low-income countries. The connection between the PURE diet and health outcomes was found in generally healthy people, patients with CVD, patients with diabetes, and across economies."

"The associations were strongest in areas with the poorest quality diet, including South Asia, China and Africa, where calorie intake was low and dominated by refined carbohydrates. This suggests that a large proportion of deaths and CVD in adults around the world may be due to undernutrition, that is, low intakes of energy and protective foods, rather than overnutrition. This challenges current beliefs," said Professor Salim Yusuf, senior author and principal investigator of PURE.

Read more at Science Daily

Jul 6, 2023

Webb Telescope detects most distant active supermassive black hole

Researchers have discovered the most distant active supermassive black hole to date with the James Webb Space Telescope (JWST). The galaxy, CEERS 1019, existed about 570 million years after the big bang, and its black hole is less massive than any other yet identified in the early universe.

In addition to the black hole in CEERS 1019, the researchers identified two more black holes that are on the smaller side and existed 1 billion and 1.1 billion years after the big bang. JWST also identified eleven galaxies that existed when the universe was 470 million to 675 million years old. The evidence was provided by JWST's Cosmic Evolution Early Release Science (CEERS) Survey, led by Steven Finkelstein, a professor of astronomy at The University of Texas at Austin. The program combines JWST's highly detailed near- and mid-infrared images and data known as spectra, all of which were used to make these discoveries.

"Looking at this distant object with this telescope is a lot like looking at data from black holes that exist in galaxies near our own," said Rebecca Larson, a recent Ph.D. graduate at UT Austin, who led the study. "There are so many spectral lines to analyze!"

The team has published these results in several initial papers in a special edition of The Astrophysical Journal Letters.

CEERS 1019 is notable not only for how long ago it existed, but also how relatively little its black hole weighs. It clocks in around 9 million solar masses, far less than other black holes that also existed in the early universe and were detected by other telescopes. Those behemoths typically contain more than 1 billion times the mass of the sun -- and they are easier to detect because they are much brighter. The black hole within CEERS 1019 is more like the black hole at the center of our Milky Way galaxy, which is 4.6 million times the mass of the sun.

Though smaller, this black hole existed so much earlier that it is still difficult to explain how it formed so soon after the universe began. Researchers have long known that smaller black holes must have existed earlier in the universe, but it wasn't until JWST began observing that they were able to make definitive detections.

Not only could the team untangle which emissions in the spectrum are from the black hole and which are from its host galaxy, they could also pinpoint how much gas the black hole is ingesting and determine its galaxy's star-formation rate.

The team found this galaxy is ingesting as much gas as it can while also churning out new stars. They turned to the images to explore why that might be. Visually, CEERS 1019 appears as three bright clumps, not a single circular disk.

"We're not used to seeing so much structure in images at these distances," said CEERS team member Jeyhan Kartaltepe, an associate professor of astronomy at the Rochester Institute of Technology in New York. "A galaxy merger could be partly responsible for fueling the activity in this galaxy's black hole, and that could also lead to increased star formation."

These are only the first groundbreaking findings from the CEERS Survey.

"Until now, research about objects in the early universe was largely theoretical," Finkelstein said. "With Webb, not only can we see black holes and galaxies at extreme distances, we can now start to accurately measure them. That's the tremendous power of this telescope."

In the future, it's possible JWST's data may also be used to explain how early black holes formed, revising researchers' models of how black holes grew and evolved in the first several hundred million years of the universe's history.

The James Webb Space Telescope is an international program led by NASA with its partners, the European Space Agency and the Canadian Space Agency.

More Extremely Distant Black Holes and Galaxies

The CEERS Survey is expansive, and there is much more to explore. Team member Dale Kocevski of Colby College in Waterville, Maine, and the team quickly spotted another pair of small black holes in the data. The first, within galaxy CEERS 2782, was easiest to pick out. There isn't any dust obscuring JWST's view of it, so researchers could immediately determine when its black hole existed in the history of the universe -- only 1.1 billion years after the big bang. The second black hole, in galaxy CEERS 746, existed slightly earlier, 1 billion years after the big bang. Its bright accretion disk, a ring made up of gas and dust that encircles its supermassive black hole, is still partially clouded by dust.

"The central black hole is visible, but the presence of dust suggests it might lie within a galaxy that is also furiously pumping out stars," Kocevski explained.

Like the one in CEERS 1019, the two other newly described black holes (in galaxies CEERS 2782 and CEERS 746) are also "light weights" -- at least when compared with previously known supermassive black holes at these distances. They are only about 10 million times the mass of the sun.

"Researchers have long known that there must be lower mass black holes in the early universe. Webb is the first observatory that can capture them so clearly," Kocevski said. "Now we think that lower mass black holes might be all over the place, waiting to be discovered."

Before JWST, all three black holes were too faint to be detected.

"With other telescopes, these targets look like ordinary star-forming galaxies, not active supermassive black holes," Finkelstein added.

JWST's sensitive spectra also allowed these researchers to measure precise distances to, and therefore the ages of, galaxies in the early universe. Team members Pablo Arrabal Haro of the National Science Foundation's NOIRLab and Seiji Fujimoto, a postdoctoral researcher and Hubble fellow at UT Austin, identified 11 galaxies that existed 470 million to 675 million years after the big bang. Not only are they extremely distant, the fact that so many bright galaxies were detected is notable. Researchers theorized that JWST would detect fewer galaxies than are being found at these distances.

"I am overwhelmed by the amount of highly detailed spectra of remote galaxies Webb returned," Arrabal Haro said. "These data are absolutely incredible."

Read more at Science Daily

Shrinking Arctic glaciers are unearthing a new source of methane

As the Arctic warms, shrinking glaciers are exposing bubbling groundwater springs which could provide an underestimated source of the potent greenhouse gas methane, finds new research published today in Nature Geoscience.

The study, led by researchers from the University of Cambridge and the University Centre in Svalbard, Norway, identified large stocks of methane gas leaking from groundwater springs unveiled by melting glaciers.

The research suggests that these methane emissions will likely increase as Arctic glaciers retreat and more springs are exposed. This, and other methane emissions from melting ice and frozen ground in the Arctic, could exacerbate global warming.

"These springs are a considerable, and potentially growing, source of methane emissions -- one that has been missing from our estimations of the global methane budget until now," said Gabrielle Kleber, lead author of the research who is from Cambridge's Department of Earth Sciences.

Scientists are concerned that additional methane emissions released by the Arctic thaw could ramp-up human-induced global warming. The springs the researchers studied hadn't previously been recognized as a potential source of methane emissions.

Kleber spent nearly three years monitoring the water chemistry of more than a hundred springs across Svalbard, where air temperatures are rising two times faster than the average for the Arctic. She likens Svalbard to the canary in the coal mine of global warming, "Since it is warming faster than the rest of the Arctic, we can get a preview of the potential methane release that could happen at a larger scale across this region."

Professor Andrew Hodson, study co-author from the University Centre in Svalbard said, "Living in Svalbard exposes you to the front-line of Arctic climate change. I can't think of anything more stark than the sight of methane outgassing in the immediate forefield of a retreating glacier."

Previously, research has centred on methane release from thawing permafrost (frozen ground). "While the focus is often on permafrost, this new finding tells us that there are other pathways for methane emissions which could be even more significant in the global methane budget," said study co-author Professor Alexandra Turchyn, also from Cambridge's Department of Earth Sciences.

Hodson added, "Until this work was conducted, we didn't understand the source and pathways of this gas because we were reading about studies from completely different parts of the Arctic where glaciers are absent."

The methane-delivering springs they identified are fed by a plumbing system hidden beneath most glaciers, which taps into large groundwater reserves within the underlying sediments and surrounding bedrock. Once the glaciers melt and retreat, springs appear where this groundwater network punches through to the surface.

The researchers found that methane emissions from glacial groundwater springs across Svalbard could exceed 2,000 tonnes over the course of a year -- which equates to roughly 10% of the methane emissions resulting from Norway's annual oil and gas energy industry.

This source of methane will likely become more significant as more springs are exposed, said Kleber, "If global warming continues unchecked then methane release from glacial groundwater springs will probably become more extensive."

Glacial groundwater springs aren't always easy to recognize, so Kleber trained her eye to pick them out from satellite images. Zooming in on the areas of land exposed by the retreat of 78 glaciers across Svalbard, Kleber looked for tell-tale blue trickles of ice where groundwater had leaked to the surface and frozen. She then travelled to each of these sites by snowmobile to take samples of the groundwater at locations where the ice had blistered due to pressurized water and gas build up.

When Kleber and the team profiled the chemistry of the water feeding these springs, they found that all bar one of the sites studied were highly concentrated with dissolved methane -- meaning that, when the spring water reaches the surface, there is plenty of excess methane that can escape to the atmosphere.

The researchers also identified localized hotspots of methane emissions, which were closely related to the type of rock from which the groundwater emerges. Certain rocks like shale and coal contain natural gases, including methane, produced by the breakdown of organic matter when the rocks formed. This methane can move upwards through fractures in the rock and into the groundwater.

"In Svalbard we are beginning to understand the complex and cascading feedbacks triggered by glacier melt -- it seems likely that there are more outcomes like this which we have yet to uncover," said Kleber.

Read more at Science Daily

Discovery of 500-million-year-old fossil reveals astonishing secrets of tunicate origins

Karma Nanglu says his favorite animal is whichever one he's working on. But his latest subject may hold first place status for a while: a 500-million-year-old fossilfrom the wonderfully weird group of marine invertebrates, the tunicates.

"This animal is as exciting a discovery as some of the stuff I found when hanging off a cliffside of a mountain, or jumping out of a helicopter. It's just as cool," said Nanglu, postdoctoral researcher in the Department of Organismic and Evolutionary Biology at Harvard University.

In a new study in Nature Communications, Nanglu and coauthors describe the new fossil, named Megasiphon thylakos, revealing that ancestral tunicates lived as stationary, filter-feeding adults and likely underwent metamorphosis from a tadpole-like larva.

Tunicates are truly strange creatures that come in all shapes and sizes with a wide variety of lifestyles. An adult tunicate's basic shape is typically barrel-like with two siphons projecting from its body. One of the siphons draws in water with food particles through suction, allowing the animal to feed using an internal basket-like filter device. After the animal feeds, the other siphon expels the water.

There are two main tunicate lineages, ascidiaceans (often called "sea squirts") and appendicularias. Most ascidiaceans begin their lives looking like a tadpole and mobile, then metamorph into a barrel shaped adult with two siphons. They live their adult life attached to the seafloor. In contrast, appendicularians retain the look of a tadpole as they grow to adults and swim freely in the upper waters.

"This idea that they begin as tadpole-looking larva that, when ready to develop, basically headbutts a rock, sticks to it, and begins to metamorphosis by reabsorbing its own tail to transform into this being with two siphons is just awe-inspiring," sais Nanglu.

Interestingly, tunicates are the closest relatives of vertebrates, which includes fish, mammals, and even humans. How this odd-looking creature could be related to vertebrates is hard to imagine were it not for that tadpole beginning. Tunicate's close relationship to vertebrates makes studying them critical for understanding our own evolutionary origins. Unfortunately, it's not easy to do as tunicates are almost completely absent from the entire fossil record, with only a handful of fossils appearing convincingly as members of the group.

With so few fossils, scientists relied mainly on what could be learned from modern tunicate species. Because no one knew the morphology and ecology of the last common ancestor of the tunicates, scientists could only hypothesize that it was either a benthic animal with two siphons, like the ascidiaceans, or a free-swimming animal like the appendicularians.

M. thylakos had all the basic hallmarks of an ascidiacean tunicate, a barrel-shaped body and two prominent siphon-like growths. But the feature that stood out to the team was the dark bands running up and down the fossil's body.

High powered images of M. thylakos allowed the researchers to conduct a side-by-side comparison to a modern ascidiacean. The researchers used dissected sections of the modern tunicate Ciona to identify the nature of Megasiphon's dark bands. The comparisons revealed remarkable similarities between Ciona's muscles, which allow the tunicate to open and close its siphons, and the dark bands observed in the 500-million-year-old fossil.

"Megasiphon's morphology suggests to us that the ancestral lifestyle of tunicates involved a non-moving adult that filter fed with its large siphons," said Nanglu. "It's so rare to find not just a tunicate fossil, but one that provides a unique and unparalleled view into the early evolutionary origins of this enigmatic group."

M. thylakos is the only definitive tunicate fossil with soft tissue preservation that has been discovered to date. It is the oldest of its kind originating from the middle Cambrian Marjum Formation in Utah. The fossil was recognized as a tunicate by co-authors research associate, Rudy Lerosey-Aubril, and Professor Javier Ortega-Hernández (both in the Department of Organismic and Evolutionary Biology) while visiting the Utah Museum of Natural History (UMNH) in 2019.

"The fossil immediately caught our attention," said Ortega-Hernández, "although we mostly work on Cambrian arthropods, such as trilobites and their soft bodied relatives, the close morphological similarity of Megasiphon with modern tunicates was simply too striking to overlook, and we immediately knew that the fossil would have an interesting story to tell."

Fossils from the Marjum Formation date from shortly after the Cambrian Explosion, one of the most significant evolutionary events in Earth's history which occurred approximately 538 million years ago. During this time the most major animal groups appeared in the fossil record for the first time radically changing marine ecosystems. Tunicates, however, are noticeably absent in Cambrian rocks even though they are diverse and abundant in modern oceans.

There are many Cambrian fossil sites with exceptional preservation in the United States, but these are often overlooked compared to those from the Burgess Shale in Canada and Chengjiang in China. "The discovery of Megasiphon perfectly illustrates why Javier and I have been conducting fieldwork in Utah for the last ten years," said Lerosey-Aubril. "The Marjum strata has all of our attention right now as we know that it preserves fossils of animal groups, such as tunicates or comb jellies, that are almost entirely absent from the Cambrian fossil record."

Molecular clock estimates suggest that ascidiaceans originated 450 million years ago. However, at 500 million years old, M. thylakos provides the clearest view into the anatomy of ancient tunicates and their earliest evolutionary history. Significantly, M. thylakos provides evidence that most of the modern body plan of tunicates was already established soon after the Cambrian Explosion.

"Given the exceptional quality of preservation and the age of the fossil, we can actually say quite a bit about the evolutionary history of the tunicates," said Nanglu. "This is an incredible find as we had virtually no conclusive evidence for the ancestral modes of life for this group before this."

After collecting hundreds of new fossils again this spring, the researchers are convinced the Marjum Formation has only started to reveal its secrets.

Read more at Science Daily

Creative people enjoy idle time more than others

Creative people are more likely to make the most of their downtime during a typical day by exploring their mind, a new study by University of Arizona researchers suggests.

The study, published in the Creativity Research Journal, finds that creative people are more likely to fruitfully use idle time by letting one idea lead to another. Study participants who were more creative felt less bored when they sat alone in a room, researchers found. And during the COVID-19 pandemic, a time when the world experienced unusually extended periods of unstructured time, creative people were less bored and more engaged with their thoughts.

"I am particularly interested in creativity because we wanted to know what's going on in the mind of creative individuals, especially in situations where nothing constrains their thoughts," said lead study author Quentin Raffaeli, a graduate student in the UArizona Department of Psychology.

In psychology and neuroscience, most studies on human thoughts either prompt participants to think in a certain way or ask them to report on thoughts they experienced, but less is known about how thoughts naturally arise and unfold over time in unprompted contexts, said Jessica Andrews-Hanna, an associate professor in the Department of Psychology and senior author of the paper.

"This is where our study comes in," Andrews-Hanna said.

History is filled with anecdotes of famous scientists, artists and philosophers who enjoyed being alone with their thoughts, and those people often generated some of their best ideas during idle time, Andrews-Hanna said.

"In today's busy and digitally connected society, time to be alone with one's thoughts without distraction may be becoming a rare commodity," she added.

The researchers divided the study into two parts. For the first experiment, the researchers asked each participant to sit alone in a room for 10 minutes without any access to digital devices. In the absence of any particular prompt, the participants were asked to voice their thoughts aloud in real time. The recorded files from 81 participants were then transcribed and analyzed.

The researchers assessed the participants' creativity through a "divergent thinking test," a lab-based verbal test that measures a person's ability to think outside of the box. Participants who performed well in the divergent thinking test had thoughts that flowed freely and were associated with one another, often indicated by phrases such as "this reminds me of" or "speaking of which."

"While many participants had a tendency to jump between seemingly unrelated thoughts, creative individuals showed signs of thinking more associatively," Raffaeli said.

The first experiment also found that creative people were more engaged in their thoughts when they were left alone without distractions, such as cell phone and internet.

"Creative people rated themselves as being less bored, even over those 10 minutes. They also spoke more words overall, which indicated that their thoughts were more likely to move freely," Andrews-Hanna said.

To complement their initial findings, the researchers extended their study in the context of a much larger span of time -- the COVID-19 pandemic -when many people were alone with their thoughts more often.

For the second experiment, over 2,600 adults answered questions through a smartphone app called Mind Window, developed by Andrews-Hanna and her graduate student Eric Andrews. Participants who self-identified as being creative reported being less bored during the pandemic.

"As we become more overworked, overscheduled and addicted to our digital devices, I think we need to do a better job in our homes, our workplaces and our schools to cultivate time to simply relax with our thoughts," Andrews-Hanna said.

The researchers are continuing this line of work using their Mind Window app. They encourage people to download and use the app to help scientists understand how people across the world think in their everyday lives.

Read more at Science Daily

Jul 5, 2023

Large sub-surface granite formation signals ancient volcanic activity on Moon's dark side

A large formation of granite discovered below the lunar surface likely was formed from the cooling of molten lava that fed a volcano or volcanoes that erupted early in the Moon's history -- as long as 3.5 billion years ago.

A team of scientists led by Matthew Siegler, an SMU research professor and research scientist with the Planetary Science Institute, has published a study in Nature that used microwave frequency data to measure heat below the surface of a suspected volcanic feature on the Moon known as Compton-Belkovich. The team used the data to determine that the heat being generated below the surface is coming from a concentration of radioactive elements that can only exist on the Moon as granite.

Granites are the igneous rock remnants of the plumbing systems below extinct volcanos. The granite formation left when lava cools without erupting is known as a batholith.

"Any big body of granite that we find on Earth used to feed a big bunch of volcanoes, much like a large system is feeding the Cascade volcanoes in the Pacific Northwest today," Siegler said. "Batholiths are much bigger than the volcanoes they feed on the surface. For example, the Sierra Nevada mountains are a batholith, left from a volcanic chain in the western United States that existed long ago."

The lunar batholith is located in a region of the Moon previously identified as a volcanic complex, but researchers are surprised at its size, with an estimated diameter of 50 kilometers.

Granite is somewhat common on Earth, and its formation is generally driven by water and plate tectonics, which aid in creating large melt bodies below the Earth's surface. However, granites are extremely rare on the Moon, which lacks these processes.

Finding this granite body helps explain how the early lunar crust formed.

"If you don't have water it takes extreme situations to make granite," Siegler said. "So, here's this system with no water, and no plate tectonics -- but you have granite.

Was there water on the moon -- at least in this one spot? Or was it just especially hot?"

Read more at Science Daily

Fewer teens now perceive themselves as overweight -- international study of more than 745,000 adolescents

A study involving more than 745,000 adolescents from 41 countries across Europe and North America identified an increase in the amount of teenagers who underestimate their body weight.

Tracking data from 2002 to 2018, the peer-reviewed findings, published today in Child and Adolescent Obesity, demonstrate a noticeable decrease in those who overestimate their weight too.

The team of international experts, who carried out the research, warn these shifting trends in body weight perception could reduce the effectiveness of public health interventions aimed at weight reduction in young people.

"During this impressionable age, body weight perception may influence a young person's lifestyle choices, such as the amount and types of food they eat and their exercise habits," says lead author Doctor Anouk Geraets, from the Department of Social Sciences, at the University of Luxembourg.

"So it's concerning that we're seeing a trend where fewer adolescents perceive themselves as being overweight -- as this could undermine ongoing efforts to tackle increasing levels of obesity in this age group. Young people who underestimate their weight and therefore do not consider themselves to be overweight may not feel they need to lose excess weight and, as a result, they may make unhealthy lifestyle choices."

A person's perception of their body weight may not accurately reflect their actual weight. A discrepancy in body weight perception (BWP) may either be an underestimation (where actual weight is higher than perceived weight) or an overestimation (where actual weight is lower than perceived weight).

In the present study, the researchers examined survey data from 746,121 11-, 13- and 15-year-olds from 41 countries collected at four-yearly intervals between 2002 and 2018 in the International Health Behavior in School-Aged Children (HBSC), a WHO collaborative study.

The team modeled trends in BWP among adolescents across different countries over time, making adjustments for age, gender, and family socioeconomic status. They found:

  •     Underestimation of weight status increased, and overestimation of weight status decreased over time among both sexes, with stronger trends for girls.
  •     Correct weight perception increased over time among girls, while it decreased among boys.
  •     Changes in correct weight perception, underestimation and overestimation of weight status differed across different countries -- but these changes could not be explained by an increase in country-level overweight/obesity prevalence.


The authors speculated that the observed differences between girls and boys in BWP may support the idea there are sex differences in body ideals -- and that these body ideals have changed over time. Notably, the increased underestimation and decreased overestimation of weight status over time for girls may be explained by the emergence of an athletic and strong body, as a new contemporary body ideal for both sexes.

"This study has clinical and public health implications. The increase in correct weight perception and the decrease in overestimation may have a positive effect on unnecessary and unhealthy weight loss behaviors among adolescents, while the increase in underestimation might indicate the need for interventions to strengthen correct weight perception," says lead author Doctor Anouk Geraets.

"More research is now needed to understand the factors underlying these time trends and to develop effective public health interventions."

Read more at Science Daily

Potent greenhouse gas produced by industry could be readily abated with existing technologies

Researchers have found that one method of reducing greenhouse gas emissions is available, affordable, and capable of being implemented right now. Nitrous oxide, a potent greenhouse gas and ozone-depleting substance, could be readily abated with existing technology applied to industrial sources.

"The urgency of climate change requires that all greenhouse gas emissions be abated as quickly as is technologically and economically feasible," said lead author Eric Davidson, a professor with the University of Maryland Center for Environmental Science. "Limiting nitrous oxide in an agricultural context is complicated, but mitigating it in industry is affordable and available right now. Here is a low-hanging fruit that we can pluck quickly."

When greenhouse gases are released into the atmosphere, they trap the heat from the sun, leading to a warming planet. In terms of emissions, nitrous oxide is third among greenhouse gases, topped only by carbon dioxide and methane. Also known as laughing gas, it has a global warming potential nearly 300 times that of carbon dioxide and stays in the atmosphere for more than 100 years. It also destroys the protective ozone layer in the stratosphere, so reducing nitrous oxide emissions provides a double benefit for the environment and humanity.

Nitrous oxide concentration in the atmosphere has increased at an accelerating rate in recent decades, mostly from increasing agricultural emissions, which contribute about two-thirds of the global human-caused nitrous oxide. However, agricultural sources are challenging to reduce. In contrast, for the industry and energy sectors, low-cost technologies already exist to reduce nitrous oxide emissions to nearly zero.

Industrial nitrous oxide emissions from the chemical industry are primarily by-products from the production of adipic acid (used in the production of nylon) and nitric acid (used to make nitrogen fertilizers, adipic acid, and explosives). Emissions also come from fossil fuel combustion used in manufacturing and internal combustion engines used in cars and trucks.

"We know that abatement is feasible and affordable. The European Union's emissions trading system made it financially attractive to companies to remove nitrous oxide emissions in all adipic acid and nitric acid plants," said co-author Wilfried Winiwarter of the International Institute for Applied Systems Analysis. "The German government is also helping to fund abatement of nitrous oxide emissions from nitric acid plants in several low-income and middle-income countries."

The private sector could also play a key role in nitrous oxide emissions reduction, encouraged by trends in consumer preferences for purchasing climate-friendly products. For example, 65% of the nitrous emissions embodied in nylon products globally are used in passenger cars and light vehicles. Automobile manufacturers could require supply chains to source nylon exclusively from plants that deploy efficient nitrous oxide abatement technology.

Read more at Science Daily

Apex predator of the Cambrian likely sought soft over crunchy prey

Biomechanical studies on the arachnid-like front “legs” of an extinct apex predator show that the 2-foot (60-centimeter) marine animal Anomalocaris canadensis was likely much weaker than once assumed. One of the largest animals to live during the Cambrian, it was probably agile and fast, darting after soft prey in the open water rather than pursuing hard-shelled creatures on the ocean floor. The study is published today in the journal Proceedings of the Royal Society B.

First discovered in the late 1800s, Anomalocaris canadensis—which means “weird shrimp from Canada” in Latin—has long been thought to be responsible for some of the scarred and crushed trilobite exoskeletons paleontologists have found in the fossil record.

“That didn’t sit right with me, because trilobites have a very strong exoskeleton, which they essentially make out of rock, while this animal would have mostly been soft and squishy,” said lead author Russell Bicknell, a postdoctoral researcher in the American Museum of Natural History’s Division of Paleontology, who conducted the work while at the University of New England in Australia.

Recent research on the armor-plated, ring-shaped mouthparts of A. canadensis lays doubt on the animal’s ability to process hard food. The latest study set out to investigate whether the predator’s long, spiny front appendages could do the job instead.

The first step for the research team, which included scientists from Germany, China, Switzerland, the United Kingdom, and Australia, was to build a 3D reconstruction of A. canadensis from the extraordinarily well-preserved—but flattened—fossils of the animal that have been found in Canada’s 508-million-year-old Burgess Shale. Using modern whip scorpions and whip spiders as analogues, the team was able to show that the predator’s segmented appendages were able to grab prey and could both stretch out and flex.

A modeling technique called finite element analysis was used to show the stress and strain points on this grasping behavior of A. canadensis, illustrating that its appendages would have been damaged while grabbing hard prey like trilobites. The researchers used computational fluid dynamics to place the 3D model of the predator in a virtual current to predict what body position it would likely use while swimming.

The combination of these biomechanical modeling techniques—used together in a scientific paper for the first time—paint a different picture of A. canadensis than was previously assumed. The animal was likely a speedy swimmer, zooming after soft prey in the water column with its front appendages outstretched.

Read more at Science Daily

Jul 4, 2023

Astrophysicists propose a new way of measuring cosmic expansion: Lensed gravitational waves

The universe is expanding; we've had evidence of that for about a century. But just how quickly celestial objects are receding from each other is still up for debate.

It's no small feat to measure the rate at which objects move away from each other across vast distances. Since the discovery of cosmic expansion, its rate has been measured and re-measured with increasing precision, with some of the latest values ranging from 67.4 up to 76.5 kilometers per second per megaparsec, which relates the recession velocity (in kilometers per second) to the distance (in megaparsecs).

The discrepancy between different measurements of cosmic expansion is called the "Hubble tension." Some have called it a crisis in cosmology. But for UC Santa Barbara theoretical astrophysicist Tejaswi Venumadhav Nerella and colleagues at the Tata Institute of Fundamental Research in Bangalore, India, and the Inter-University Center for Astronomy and Astrophysics in Pune, India, it is an exciting time.

Since the first detection of gravitational waves in 2015, detectors have been significantly improved and are poised to yield a rich haul of signals in the coming years. Nerella and his colleagues have come up with a method to use these signals to measure the universe's expansion, and perhaps help to settle the debate once and for all. "A major scientific goal of future detectors is to deliver a comprehensive catalog of gravitational wave events, and this will be a completely novel use of the remarkable dataset," said Nerella, co-author of a paper published in Physical Review Letters.

Measurements of the cosmic expansion rate boil down to velocity and distance. Astronomers use two kinds of methods to measure distances: the first start with objects with a known length ("standard rulers") and look at how big they appear in the sky. These "objects" are features in cosmic background radiation, or in the distribution of galaxies in the universe.

A second class of methods starts with objects of known luminosity ("standard candles") and measures their distances from Earth using their apparent brightness. These distances are connected to those of farther bright objects and so on, which builds up a chain of measurement schemes that is often called the "cosmic distance ladder." Incidentally, gravitational waves themselves can also help measure cosmic expansion, since the energy released by the collision of neutron stars or black holes can be used to estimate the distance to these objects.

The method that Nerella and his co-authors propose belongs to the second class but uses gravitational lensing. This is a phenomenon that occurs when massive objects warp spacetime, and bend waves of all kinds that travel near the objects. In rare cases, lensing can produce multiple copies of the same gravitational wave signal that reach Earth at different times -- the delays between the signals for a population of multiple imaged events can be used to calculate the universe's expansion rate, according to the researchers.

"We understand very well just how sensitive gravitational wave detectors are, and there are no astrophysical sources of confusion, so we can properly account for what gets into our catalog of events," Nerella said. "The new method has sources of error that are complementary to those of existing methods, which makes it a good discriminator."

The sources of these signals would be binary black holes: systems of two black holes that orbit each other and ultimately merge, releasing massive amounts of energy in the form of gravitational waves. We haven't yet detected strongly lensed examples of these signals, but the upcoming generation of ground-based detectors is expected to have the necessary level of sensitivity.

"We expect the first observation of lensed gravitational waves in the next few years," said study co-author Parameswaran Ajith. Additionally, these future detectors should be able to see farther into space and detect weaker signals.

The authors expect these advanced detectors to start their search for merging black holes in the next decade. They anticipate recording signals from a few million black hole pairs, a small fraction (about 10,000) of which will appear multiple times in the same detector due to gravitational lensing. The distribution of the delays between these repeat appearances encodes the Hubble expansion rate.

Read more at Science Daily

Three things to know: Climate change's impact on extreme-weather events

In an article published in the Proceedings of the National Academy of Sciences, Michael Mann, professor in the Department of Earth and Environmental Science in the University of Pennsylvania's School of Arts & Sciences, and colleagues from Clemson University, the University of California Los Angeles, and Columbia University investigate the effects of climate change on exacerbating compounding heat and drought situations.

Their findings offer new insights into predicting their interplay, which will provide scientists and policymakers with a clearer and more holistic approach to preventing and preparing for extreme-weather events.

"We wanted to see how the state-of-the-art climate models used in the most recent assessment reports of the Intergovernmental Panel on Climate Change address the episodes of heat waves and droughts that have given rise to some of the worst wildfires we've witnessed in recent history," Mann says.

"We also wanted to get a better understanding of how often these events were occurring, their typical durations, and their intensity to improve not only our forecasting but approaches to mitigating further damage to human life."

Compound drought and heat wave events and their effects

The researchers document the deleterious effects of increasingly severe droughts and wildfires occurring in the past three years.

"Two standout events," Mann says, "were the 2020 California wildfires and the 2019-20 Australian bush fire season, which lasted nearly one whole year and came to be known as the Black Summer. These are known as compound drought and heat wave (CDHW) events and refer to situations wherein a region experiences both prolonged hot temperatures and a shortage of water."

These conditions can occur together and worsen each other's impacts, the researchers say, and could potentially lead to heat-related illnesses and deaths, water scarcity for drinking and agriculture, reduced crop yields, increased wildfire risk, and ecological stress. They also note that anthropogenic climate change -- climate change that is driven by human activity -- can contribute to the frequency and severity of these events.

Projected impact of a worst-case versus moderate-case scenario

The researchers compared two contrasting socioeconomic pathways: the high-end or worst-case scenario, wherein society fails to mitigate the effects of anthropogenic climate change, and a moderate scenario, wherein some conservative measures are put in place and efforts are made to abide by them.

In the worst-case scenario, they found that by the late 21st century approximately 20% of global land areas are expected to witness approximately two CDHW events per year. These events could last for around 25 days and a fourfold increase in severity.

"Comparatively, the average CDHW frequency over the recent observed reference period was approximately 1.2 events per year, lasting less than 10 days, with far less severity," Mann says.

The most vulnerable geographical regions, such as eastern North America, southeastern South America, Central Europe, East Africa, Central Asia, and northern Australia, are projected to experience the largest increases in CDHW frequency by the end of the 21st century.

"Interestingly, places like Philadelphia and some of the regions in the eastern U.S. are where we expect to see an increase in these sorts of events; urban environments in the summertime will witness the highest relative frequency of these events," Mann says.

Critical need for proactive measures

The researchers emphasize the profound threat posed by more frequent and intense CDHW events in the coming decades and the dependence the emissions pathway chosen has on the severity of these events.

As climate change continues to unfold, addressing the escalating risks associated with CDHW events becomes crucial. This study contributes to the growing understanding of the projected changes in CDHWs and highlights the need for proactive measures, including emission reductions and adaptation strategies, to build resilience and safeguard vulnerable regions from the impacts of compound drought and heat wave events.

"Our findings provide important scientific context for the record heat and wildfire that we're witnessing right now here in the United States," Mann says.

"They underscore that we need to get off fossil fuels as quickly as possible to prevent a worsening of these dangerous combinations of heat and drought."

Read more at Science Daily

Sociogenomics: The intricate science of how genetics influences sociology

Humans contain multitudes. Each person on the planet contains enough DNA to stretch to Pluto -- several times.

Studying how all this genetic material works, and especially how genes influence human behavior, is an enormously complicated undertaking -- one that's being made easier by the emergence of massive banks of genetic data and complex data science analysis techniques to parse that data.

Robbee Wedow, an assistant professor of sociology and data science in Purdue University's College of Liberal Arts, an adjunct assistant professor of medical and molecular genetics in the Indiana University School of Medicine, and Purdue's inaugural faculty-in-residence at AnalytiXIN/16 Tech in Indianapolis, maps those miles of genes for insights into how genetics interacts with social forces and environments. He uses genetic databases to study how tiny bits of genes called single nucleotide polymorphisms, or SNPs, affect complex, overarching traits including sexual behavior, educational attainment, socioeconomic status, health behaviors and more.

"We know that social forces like socioeconomic status play a role in influencing a person's life and life outcomes," Wedow said. "But we also know there is a genetic component to every behavior. What we don't understand yet is how these biological forces interact with the environment and what these sorts of interactions might mean for social science -- and what we think we know about social science research to date. We are using well-powered genetic data to do more accurate and replicable social science and to explore what might be possible at the intersection of genetic and behavioral science."

When scientists sequenced the first human genome in 2003, the true scale of genetics started to become apparent. Early geneticists thought that finding a gene for each trait was simply a matter of looking in the right place.

However, DNA bases and genes are not simply keys on a massive piano upon which human lives are played like masterpieces. Instead, DNA operates more like a pipe organ, where stops, switches and pedals can change the way notes sound, mute them or increase their volume. Environment, nutrition, pollution, life experiences and other circumstances can change when and how genes matter for certain outcomes, and even change which places in the genomes matter for those outcomes altogether. There isn't a single gene for a behavioral outcome. Biology isn't destiny: It may lay out the musical score, but musicians are free to improvise and interpret as they play.

The idea, Wedow stresses, is not that these genes control a person's life or destiny. Each SNP, in fact, has a very small effect on an overall outcome like educational attainment. No "Gattaca"-level reading of one's destiny from their genes -- in the style of the dystopian 1990s movie -- is on the horizon. Rather, being able to clarify the genetics of certain behaviors can help scientists understand the nuances of human behavior.

"People think that genetics is always about biology, but in the case of sociogenomics it's more about using the advantages of this new, well-powered data to better understand the outcomes themselves, or about allowing researchers to do more accurate social science and behavioral research," Wedow said. "The social sciences have recently struggled with replicating studies. Oftentimes the sample sizes are too small for rigorous estimates and certainty. That's where the potential of using these huge banks of genetic data for the social sciences comes in. They help us get a much clearer, more certain look at what's really going on."

Analyzing the genetics is only the first step. An American geneticist in the early 1800s could have correlated genetics with educational mastery and concluded that anyone with two X chromosomes tended to have less education. That is not because the chromosomes had anything at all to do with education. Rather, the correlation reflected social and gender biases present in the culture at the time. Similar insights lurk in Wedow's research.

"Sociogenomics isn't necessarily about biology, like some might think," Wedow said. "When someone studies cancer genetics, they are studying it because they want to elucidate the biology of cancer; they want to figure out ways to better diagnose it, track it and treat it. But researchers in the field of sociogenomics want to study the genetics in order to do better social science. No one would ever study sociology without considering socioeconomic status and environment. We want to be able to take genetics into account in the same way."

In a study in volume 7, No. 7 of the journal Nature Human Behaviour, Wedow, his co-corresponding author Andrea Ganna from the University of Helsinki, and his other co-authors looked at 109 survey questions in over 300,000 individuals to examine the ways that people's genes correlated with whether they answered certain questions or left them blank in surveys answered in the UK Biobank. That may sound fairly abstruse, but it fills a gap that the field of sociology has struggled with for decades.

"How do you know what you don't know or how someone might have answered a question if they choose not to answer it?" Wedow said. "It turns out that the genetics of people who either answer the survey question, or do not, overlaps with the genetics of other outcomes like education, income or certain health behaviors."

That means that scientists can use this type of data to get a better understanding of how people who choose not to answer questionnaires might also share similar responses to questions about health or social behaviors. Geneticists can also use the results of this study to correct for bias in genetic studies of any behavioral, psychiatric or medical outcomes.

Read more at Science Daily

New role for taste receptors

Taste receptors for bitter substances are not only found on the tongue but also on cells outside the oral cavity. As a new study by the Leibniz Institute for Food Systems Biology at the Technical University of Munich now shows, extraoral bitter taste receptors could also serve as endogenous sensors for bile acids. This discovery suggests that, in addition to food components, endogenous substances may have influenced the evolution of bitter taste receptors. Furthermore, the study provides new approaches to explore the health effects of food constituents in which extraoral bitter taste receptors are involved.

As taste sensors, bitter taste receptors serve to detect and avoid potential toxins in food. Relatively recent findings also indicate that bitter taste receptors are also found on cells of the lung, brain, and gastrointestinal tract, and on blood and sperm cells. A fact that suggests further, less well-studied receptor functions in the body, especially since the human body also produces bitter substances itself.

Based on these findings, the question arises whether bitter taste receptors evolved primarily as taste receptors or rather as endogenous sensors interacting with endogenous bitter substances. The latter, of course, would require that concentrations of endogenous substances in the corresponding body fluids be sufficient to activate endogenous bitter taste receptors on extraoral tissues and cells.

Bile acids are endogenous bitter substances

Bile acids are a good example of endogenous bitter substances and are present in various body fluids. Therefore, a team led by Maik Behrens from the Leibniz Institute in Freising, Germany, investigated which of the approximately 25 human bitter taste receptor types respond to physiologically relevant bile acid concentrations. For this purpose, the team used an established cellular test system and combined functional experiments with molecular modeling approaches. The eight bile acids tested included primary, secondary, tertiary, and conjugated bile acids.

As the team shows, five bitter taste receptor types respond to the bile acids tested. "In this context, the measured activation thresholds of the receptors matched very well the bile acid concentrations reported for human body fluids in the literature," says Florian Ziegler, a doctoral student at the Leibniz Institute who contributed significantly to the study. "Moreover, we were not only able to characterize the binding of bile acids to the bitter taste receptor TAS2R1 by modeling studies but even reproduced the differences of experimental activity data," adds Antonella Di Pizio, who heads the Molecular Modeling group at the Leibniz Institute.

Read more at Science Daily

Jul 3, 2023

New image from James Webb Space Telescope reveals astonishing Saturn and its rings

Saturn's iconic rings seem to glow eerily in this incredible infrared picture, which also unveils unexpected features in Saturn's atmosphere. See link to image below.

This image serves as context for an observing program that will test the telescope's capacity to detect faint moons around the planet and its bright rings. Any newly discovered moons could help scientists put together a more complete picture of the current system of Saturn, as well as its past.

Methane gas absorbs almost all the sunlight falling on the atmosphere at this picture's specific infrared wavelength (3.23 microns). As a result, Saturn's familiar striped patterns aren't visible because the methane-rich upper atmosphere blocks our view of the primary clouds. Instead, Saturn's disk appears dark, and we see features associated with high-altitude stratospheric aerosols, including large, dark, and diffuse structures in Saturn's northern hemisphere that don't align with the planet's lines of latitude. Interestingly, researchers previously spotted similar wave-like in early JWST NIRCam observations of Jupiter.

Unlike the atmosphere, Saturn's rings lack methane, so at this infrared wavelength, they are no darker than usual and thus easily outshine the darkened planet. This new image of Saturn also reveals intricate details within the ring system, showcasing several of the planet's moons like Dione, Enceladus, and Tethys.

"We are very pleased to see JWST produce this beautiful image, which is confirmation that our deeper scientific data also turned out well," said Dr. Matthew Tiscareno, a senior research scientist at the SETI Institute who led the process of designing this observation. "We look forward to digging into the deep exposures to see what discoveries may await."

Over the past few decades, missions like NASA's Pioneer 11, Voyagers 1 and 2, the Cassini spacecraft and the Hubble Space Telescope have observed Saturn's atmosphere and rings. The image captured by JWST is just a taste of what this observatory will uncover about Saturn in the coming years as scientists. This image is part of a suite of deeply exposed images where researchers hope to identify new ring structures and perhaps even new moons of Saturn.

Moving from the inner to the outer features of Saturn's rings, we can observe the dark C ring, the bright B ring, the narrow and dark Cassini Division, and the medium-bright A ring with the dark Encke Gap near its outer edge. Additionally, off the outer edge of the A ring, we can see the narrow strand known as the F ring. The rings cast a shadow on the planet and vice versa, creating intriguing visual effects.

In-depth exposures not shown in this image will allow scientists to investigate Saturn's fainter rings, including the thin G ring and diffuse E ring, which are not visible here. Saturn's rings consist of an assortment of rocky and icy fragments, ranging in size from smaller than a grain of sand to as large as mountains on Earth. Recently, researchers used JWST to explore Enceladus and discovered a substantial plume emanating from the moon's southern pole. This plume contains particles and copious amounts of water vapor, contributing to Saturn's E ring.

Read more at Science Daily

Water storage capacity in oceanic crust slabs increases with age, researchers find

An international research team has discovered that a subduction zone's age affects the ability for it to recycle water between the Earth's surface and its inner layers.

Details of their findings were reported in the journal Geology on July 1, 2023.

When two tectonic plates collide and one subducts beneath the other, various rocks get subjected to changes in pressure, temperatures and chemical environments and undergo metamorphosis. This process is important for recycling water and critical elements, such as strontium, uranium, thorium, and lead, between the Earth's surface and its deep interior.

One such rock that forms at high pressure is lawsonite eclogites. Lawsonite eclogites, play a crucial role in storing water in subducting plates since they contain the mineral lawsonite, which can carry large quantities of H2O to the deeper mantle.

Scientists have traditionally thought that oceanic crust turns into lawsonite eclogites in cold subduction zones. This is based on models and experiments that point to lawsonite being a common mineral in cold geothermal regimes. Yet, the opposite is the case. Lawsonite is not commonly found in fossilized subduction zones on the Earth's surface, providing further questions regarding our current understanding of how water is stored in subductions zones.

To investigate this puzzle, a team lead by Dr. David Hernández Uribe and Professor Tatsuki Tsujimori from the Department of Earth and Environmental Sciences at the University of Illinois Chicago and the Center for Northeast Asian Studies at Tohoku University, respectively, used state-of-the-art modeling techniques to simulate rock formation at different lifetime stages of a subduction zone.

Petrological modeling and phase equilibrium calculations performed by the group revealed that, in a subduction zone's early stages (< 6 million years), oceanic crust does not turn into lawsonite eclogites. But over time, (12-33 millions years) it does.

"We found that the formation of lawsonite eclogites depends on how mature the subduction zone is," says Tsujimori. "Lawsonite is important for recycling water deep beneath the Earth's surface only in mature subduction zones. In younger zones, it doesn't play as big of a role as previously thought."

Read more at Science Daily

Dangerous chatbots: AI chatbots to be approved as medical devices?

"Large Language Models are neural network language models with remarkable conversational skills. They generate human-like responses and engage in interactive conversations. However, they often generate highly convincing statements that are verifiably wrong or provide inappropriate responses. Today there is no way to be certain about the quality, evidence level, or consistency of clinical information or supporting evidence for any response. These chatbots are unsafe tools when it comes to medical advice and it is necessary to develop new frameworks that ensure patient safety," said Prof. Stephen Gilbert, Professor for Medical Device Regulatory Science at Else Kröner Fresenius Center for Digital Health at TU Dresden.

Challenges in the regulatory approval of large language models


Most people research their symptoms online before seeking medical advice. Search engines play a role in decision-making process. The forthcoming integration of LLM-chatbots into search engines may increase users' confidence in the answers given by a chatbot that mimics conversation. It has been demonstrated that LLMs can provide profoundly dangerous information when prompted with medical questions.

LLM's underlying approach has no model of medical "ground truth," which is inherently dangerous. Chat interfaced LLMs have already provided harmful medical responses and have already been used unethically in 'experiments' on patients without consent. Almost every medical LLM use case requires regulatory control in the EU and US. In the US their lack of explainability disqualifies them from being 'non devices'. LLMs with explainability, low bias, predictability, correctness, and verifiable outputs do not currently exist and they are not exempted from current (or future) governance approaches.

Read more at Science Daily

Displays controlled by flexible fins and liquid droplets more versatile, efficient than LED screens

Flexible displays that can change color, convey information and even send veiled messages via infrared radiation are now possible, thanks to new research from the University of Illinois Urbana-Champaign. Engineers inspired by the morphing skins of animals like chameleons and octopuses have developed capillary-controlled robotic flapping fins to create switchable optical and infrared light multipixel displays that are 1,000 times more energy efficient than light-emitting devices.

The new study led by mechanical science and engineering professor Sameh Tawfick demonstrates how bendable fins and fluids can simultaneously switch between straight or bent and hot and cold by controlling the volume and temperature of tiny fluid-filled pixels. Varying the volume of fluids within the pixels can change the directions in which the flaps flip -- similar to old-fashioned flip clocks -- and varying the temperature allows the pixels to communicate via infrared energy.

The study findings are published in the journal Science Advances.

Tawfick's interest in the interaction of elastic and capillary forces -- or elasto-capillarity -- started as a graduate student, spanned the basic science of hair wetting and led to his research in soft robotic displays at Illinois.

"An everyday example of elasto-capillarity is what happens to our hair when we get in the shower," Tawfick said. "When our hair gets wet, it sticks together and bends or bundles as capillary forces are applied and released when it dries out."

In the lab, the team created small boxes, or pixels, a few millimeters in size, that contain fins made of a flexible polymer that bend when the pixels are filled with fluid and drained using a system of tiny pumps. The pixels can have single or multiple fins and are arranged into arrays that form a display to convey information, Tawfick said.

"We are not limited to cubic pixel boxes, either," Tawfick said. "The fins can be arranged in various orientations to create different images, even along curved surfaces. The control is precise enough to achieve complex motions, like simulating the opening of a flower bloom."

The study reports that another feature of the new displays is the ability to send two simultaneous signals -- one that can be seen with the human eye and another that can only be seen with an infrared camera.

"Because we can control the temperature of these individual droplets, we can display messages that can only be seen using an infrared device," Tawfick said, "Or we can send two different messages at the same time."

However, there are a few limitations to the new displays, Tawfick said.

While building the new devices, the team found that the tiny pumps needed to control the pixel fluids were not commercially available, and the entire device is sensitive to gravity -- meaning that it only works while in a horizontal position.

"Once we turn the display by 90 degrees, the performance is greatly degraded, which is detrimental to applications like billboards and other signs intended for the public," Tawfick said. "The good news is, we know that when liquid droplets become small enough, they become insensitive to gravity, like when you see a rain droplet sticking on your window and it doesn't fall. We have found that if we use fluid droplets that are five times smaller, gravity will no longer be an issue."

The team said that because the science behind gravity's effect on droplets is well understood, it will provide the focal point for their next application of the emerging technology.

Tawfick said he is very excited to see where this technology is headed because it brings a fresh idea to a big market space of large reflective displays. "We have developed a whole new breed of displays that require minimal energy, are scaleable and even flexible enough to be placed onto curved surfaces."

Read more at Science Daily

Jul 2, 2023

Gullies on Mars could have been formed by recent periods of liquid meltwater, study suggests

A study led by Brown University researchers offers new insights into how water from melting ice could have played a recent role in the formation of ravine-like channels that cut down the sides of impact craters on Mars.

The study, published in Science, focuses on Martian gullies, which look eerily similar to gullies that form on Earth in the Dry Valleys of Antarctica and are caused by water erosion from melting glaciers. The researchers, including Brown planetary scientist Jim Head, built a model that simulates a sweet spot for when conditions on Mars allow the planet to warm above freezing temperatures, leading to periods of liquid water on Mars when ice on and beneath the surface melts.

The scientists found that when Mars tilts on its axis to 35 degrees, the atmosphere becomes dense enough for brief episodes of melting to occur at gully locations. They then matched the data from their model to periods in Mars history when the gullies in the planet's Terra Sirenum region are believed to have expanded rapidly downhill from high elevation points -- a phenomenon that could not be explained without the occasional presence of water.

"We know from a lot of our research and other people's research that early on in Mars history, there was running water on the surface with valley networks and lakes," said Head, a professor of geological sciences at Brown. "But about 3 billion years ago, all of that liquid water was lost, and Mars became what we call a hyper-arid or polar desert. We show here that even after that and in the recent past, when Mars' axis tilts to 35 degrees, it heats up sufficiently to melt snow and ice, bringing liquid water back until temperatures drop and it freezes again."

The findings help fill in some of the missing gaps on how these gullies formed, including how high they start, how severe the erosion is and how far they extend down the side of craters.

Previous theories suggest Martian gullies were carved by carbon dioxide frost, which evaporates from soil, causing rock and rubble to slide down slopes. The height of the gullies made many scientists theorize that meltwater from glaciers had to be involved because of the distance they traveled down the slopes and how eroded the gullies looked. Proving liquid water could exist on Mars since it disappeared so long ago has been difficult because temperatures typically hover about 70 degrees below freezing.

The results from the new study suggest that gully formation was driven by periods of melting ice and by CO2 frost evaporation in other parts of the year. The researchers found this has likely occurred repeatedly over the past several million years with the most recent occurrence about 630,000 years ago.

They say that if ice was present at gully locations in the areas they looked at when Mars' axis tilted to about 35 degrees, the conditions would have been right for the ice to melt because temperatures rose above 273 degrees Kelvin, equivalent to about 32 degrees Fahrenheit.

"Our study shows that the global distribution of gullies is better explained by liquid water over the last million years," said Jay Dickson, the study's lead author and a former researcher at Brown who's now at California Institute of Technology. "Water explains the elevation distribution of gullies in ways that CO2 cannot. This means that Mars has been able to create liquid water in enough volume to erode channels within the last million years, which is very recent on the scale of Mars geologic history."

Despite doubts about meltwater being possible and scientists never being able to model the right conditions on Mars for ice to melt, the researchers were convinced that the meltwater theory was accurate because they had seen similar features firsthand in Antarctica. There, despite the cold temperatures, the sun is able to heat ice just enough for it to melt and for gully activity to occur.

The new study is a continuation of previous research the team started decades earlier looking at Martian gullies. In a 2015 study, for instance, the researchers showed it was possible that there may have been past periods on Mars when water was available to form gullies if Mars tilted on its axis enough. The findings encouraged them to model what that tilt was and match it with the locations and altitudes of gullies that have formed.

The paper raises anew the fundamental question of whether life could exist on Mars. This is because life, as it's known on Earth, goes hand in hand with the presence of liquid water. Mars will eventually tilt to 35 degrees again, the researchers said.

"Could there be a bridge, if you will, between the early warm and wet Mars and the Mars that we see today in terms of liquid water?" Head said. "Everybody's always looking for environments that could be conducive to not just the formation of life but the preservation and continuation of it. Any microorganism that might have evolved in early Mars is going to be in places where they can be comfortable in ice and then also comfortable or prosperous in liquid water. In the frigid Antarctic environment, for example, the few organisms that exist often occur in stasis, waiting for water."

Read more at Science Daily