Sep 14, 2024

Path to prosperity for planet and people shrinking rapidly, scientists warn

Our planet will only remain able to provide even the most basic standard of living for everyone in the future if economic systems and technologies are dramatically transformed and critical resources are more fairly used, managed and shared, a new report shows. The report is co-authored by over sixty leading natural and social scientists from the Earth Commission, led by the UvA's Joyeeta Gupta, as well as Prof. Xuemei Bai and Prof. Diana Liverman. The report was published today in The Lancet Planetary Health.

The new research builds on the 'Safe and Just Earth System Boundaries' published in Nature last year, which found that most of the vital limits within which people and the planet can thrive have been surpassed. The new paper identifies the 'Safe and Just Space' -- within which harm to humans and nature can be minimised while ensuring everyone can be provided for -- and sets out the paths to reach and stay in such a space.

Already shrinking

But future projections to 2050 show that this space will shrink over time, driven by inequality, unless urgent transformations take place. The only way to provide for everyone and ensure societies, businesses and economies thrive without destabilising the planet is to reduce inequalities in how critical Earth system resources, such as freshwater and nutrients, are accessed and used -- alongside economic and technological transformation.

The new work found that inequalities and overconsumption of finite resources by a minority are key drivers of this shrinking. Providing minimum resources for those who don't currently have enough would add much less pressure on the Earth system than that currently caused by the minority who use far greater resources.

Joyeeta Gupta: 'We're beginning to realise the damage that inequality is doing to the Earth. Increasing pollution and poor management of natural resources is causing significant harm to people and nature. The longer we continue to widen the gap between those who have too much and those who don't have enough, the more extreme the consequences for all, as the support systems which underpin our way of life, our markets and our economies begin to collapse.'

A life free from poverty


If the Earth System Boundaries represent the "ceiling," above which Earth systems can no longer remain stable and resilient, and significant damage could be caused to people and nature, the Safe and Just Space represents a "foundation," showing us the minimum the global population needs from the Earth system, in order to live a life free from poverty. The space in between is full of opportunities that we can use to ensure a better future for people and planet.

To reach this space, the paper calls for change in three areas. Firstly, a push for changes to how we run the economy, finding new policies and funding mechanisms that can address inequality whilst reducing pressure on nature and climate. Secondly, more efficient and effective management, sharing and usage of resources at every level of society -- including addressing the excess consumption of some communities which is limiting access to basic resources for those who need them the most. Thirdly, investment in sustainable and affordable technologies, which will be essential to help us use fewer resources and to reopen the Safe and Just Space for all -- particularly where there is little or no space left.

Read more at Science Daily

Climate-change-triggered 2023 mega-landslide caused Earth to vibrate for nine days

A landslide in a remote part of Greenland caused a mega-tsunami that sloshed back and forth across a fjord for nine days, generating vibrations throughout Earth, according to a new study involving UCL researchers.

The study, published in the journal Science, concluded that this movement of water was the cause of a mysterious, global seismic signal that lasted for nine days and puzzled seismologists in September 2023.

The initial event, not observed by human eye, was the collapse of a 1.2km-high mountain peak into the remote Dickson Fjord beneath, causing a backsplash of water 200 metres in the air, with a wave up to 110 metres high. This wave, extending across 10km of fjord, reduced to seven metres within a few minutes, the researchers calculated, and would have fallen to a few centimetres in the days after.

The team used a detailed mathematical model, recreating the angle of the landslide and the uniquely narrow and bendy fjord, to demonstrate how the sloshing of water would have continued for nine days, with little energy able to escape.

The model predicted that the mass of water would have moved back and forth every 90 seconds, matching the recordings of vibrations travelling in the Earth's crust all around the globe.

The landslide, the researchers wrote, was a result of the glacier at the foot of the mountain thinning, becoming unable to hold up the rock-face above it. This was ultimately due to climate change. The landslide and tsunami were the first observed in eastern Greenland.

Co-author Dr Stephen Hicks, of UCL Earth Sciences, said: "When I first saw the seismic signal, I was completely baffled. Even though we know seismometers can record a variety of sources happening on Earth's surface, never before has such a long-lasting, globally travelling seismic wave, containing only a single frequency of oscillation, been recorded. This inspired me to co-lead a large team of scientists to figure out the puzzle.

"Our study of this event amazingly highlights the intricate interconnections between climate change in the atmosphere, destabilisation of glacier ice in the cryosphere, movements of water bodies in the hydrosphere, and Earth's solid crust in the lithosphere.

"This is the first time that water sloshing has been recorded as vibrations through the Earth's crust, travelling the world over and lasting several days."

The mysterious seismic signal -- coming from a vibration through the Earth's crust -- was detected by seismometers all over the globe, from the Arctic to Antarctica. It looked completely different to frequency-rich 'rumbles' and 'pings' from earthquake recordings, as it contained only a single vibration frequency, like a monotonous-sounding hum.

When the study's authors first discovered the signal, they made a note of it as a "USO": unidentified seismic object.

At the same time, news of a large tsunami in a remote northeast Greenland fjord reached authorities and researchers working in the area.

The researchers joined forces in a unique multidisciplinary group involving 68 scientists from 40 institutions in 15 countries, combining seismometer and infrasound data, field measurements, on-the-ground and satellite imagery, and simulations of tsunami waves.

The team also used imagery captured by the Danish military who sailed into the fjord just days after the event to inspect the collapsed mountain-face and glacier front along with the dramatic scars left by the tsunami.

It was this combination of local field data and remote, global-scale observations that allowed the team to solve the puzzle and reconstruct the extraordinary cascading sequence of events.

Lead author Dr Kristian Svennevig, from the Geological Survey of Denmark and Greenland (GEUS), said: "When we set out on this scientific adventure, everybody was puzzled and no one had the faintest idea what caused this signal. All we knew was that it was somehow associated with the landslide. We only managed to solve this enigma through a huge interdisciplinary and international effort."

He added: "As a landslide scientist, an additional interesting aspect of this study is that this is the first-ever landslide and tsunami observed from eastern Greenland, showing how climate change already has major impacts there."

The team estimated that 25 million cubic metres of rock and ice crashed into the fjord (enough to fill 10,000 Olympic-sized swimming pools).

They confirmed the size of the tsunami, one of the largest seen in recent history, using numerical simulations as well as local data and imagery.

Seventy kilometres away from the landslide, four-metre-high tsunami waves damaged a research base at Ella Ø (island) and destroyed cultural and archaeological heritage sites across the fjord system.

The fjord is on a route commonly used by tourist cruise ships visiting the Greenland fjords. Fortunately, no cruise ships were close to Dickson Fjord on the day of the landslide and tsunami, but if they had been, the consequences of a tsunami wave of that magnitude could have been devastating.

Mathematical models recreating the width and depth of the fjord at very high resolution demonstrated how the distinct rhythm of a mass of water moving back and forth matched the seismic signal.

The study concluded that with rapidly accelerating climate change, it will become more important than ever to characterise and monitor regions previously considered stable and provide early warning of these massive landslide and tsunami events.

Co-author Thomas Forbriger, from Karlsruhe Institute of Technology, said: "We wouldn't have discovered or been able to analyse this amazing event without networks of high-fidelity broadband seismic stations around the world, which are the only sensors that can truly capture such a unique signal."

 Read more at Science Daily

How El Nino and mega ocean warming caused the greatest-ever mass extinction

Mega ocean warming El Niño events were key in driving the largest extinction of life on planet Earth some 252 million years ago, according to new research.

The study, published today in Science and co-led by the University of Bristol and China University of Geosciences (Wuhan), has shed new light on why the effects of rapid climate change in the Permian-Triassic warming were so devastating for all forms of life in the sea and on land.

Scientists have long linked this mass extinction to vast volcanic eruptions in what is now Siberia. The resulting carbon dioxide emissions rapidly accelerated climate warming, resulting in widespread stagnation and the collapse of marine and terrestrial ecosystems.

But what caused life on land, including plants and usually resilient insects, to suffer just as badly has remained a source of mystery.

Co-lead author Dr Alexander Farnsworth, Senior Research Associate at the University of Bristol, said: “Climate warming alone cannot drive such devastating extinctions because, as we are seeing today, when the tropics become too hot, species migrate to the cooler, higher latitudes. Our research has revealed that increased greenhouse gases don’t just make the majority of the planet warmer, they also increase weather and climate variability making it even more ‘wild’ and difficult for life to survive.”

The Permian-Triassic catastrophe shows the problem of global warming is not just a matter of it becoming unbearably hot, but also a case of conditions swinging wildly over decades.

“Most life failed to adapt to these conditions, but thankfully a few things survived, without which we wouldn’t be here today. It was nearly, but not quite, the end of the life on Earth,” said co-lead author Professor Yadong Sun at China University of Geosciences, Wuhan.

The scale of Permian-Triassic warming was revealed by studying oxygen isotopes in the fossilised tooth material of tiny extinct swimming organisms called conodonts. By studying the temperature record of conodonts from around the world, the researchers were able to show a remarkable collapse of temperature gradients in the low and mid latitudes.

Dr Farnsworth, who used pioneering climate modelling to evaluate the findings, said: “Essentially, it got too hot everywhere. The changes responsible for the climate patterns identified were profound because there were much more intense and prolonged El Niño events than witnessed today. Species were simply not equipped to adapt or evolve quickly enough.”

In recent years El Niño events have caused major changes in rainfall patterns and temperature. For example, the weather extremes that caused the June 2024 North American heatwave when temperatures were around 15°C hotter than normal. 2023-2024 was also one of the hottest years on record globally due to a strong El Niño in the Pacific, which was further exacerbated by increased human-induced CO2 driving catastrophic drought and fires around the world.

“Fortunately such events so far have only lasted one to two years at a time. During the Permian-Triassic crisis, El Niño persisted for much longer resulting in a decade of widespread drought, followed by years of flooding. Basically, the climate was all over the place and that makes it very hard for any species to adapt,” co-author Paul Wignall, Professor of Palaeoenvironments at the University of Leeds.

The results of the climate modelling also help explain the abundant charcoal found in rock layers of that age.

“Wildfires become very common if you have a drought-prone climate. Earth got stuck in a crisis state where the land was burning and the oceans stagnating. There was nowhere to hide,” added co-author Professor David Bond, a palaeontologist at the University of Hull.

The researchers observed that throughout Earth’s history there have been many volcanic events similar to those in Siberia, and many caused extinctions, but none led to a crisis of the scale of the Permian-Triassic event.

They found Permian-Triassic extinction was so different because these Mega-El Niños created positive feedback on the climate which led to incredibly warm conditions starting in the tropics and then beyond, resulting in the dieback of vegetation. Plants are essential for removing CO2 from the atmosphere, as well as the foundation of the food web, and if they die so does one of the Earth's mechanisms to stop CO2 building up in the atmosphere as a result of continued volcanism.

This also helps explain the conundrum regarding the Permian-Triassic mass extinction whereby the extinction on land occurred tens of thousands of years before extinction in the oceans.

“Whilst the oceans were initially shielded from the temperature rises, the mega-El Nino’s caused temperatures on land to exceed most species thermal tolerances at rates so rapid that they could not adapt in time,” explained Dr Sun.

“Only species that could migrate quickly could survive, and there weren’t many plants or animals that could do that.”

Mass extinctions, although rare, are the heartbeat of the Earth’s natural system resetting life and evolution along different paths.

Read more at Science Daily