Oct 7, 2023

Scientists discover the highest energy gamma-rays ever from a pulsar

Scientists using the H.E.S.S. observatory in Namibia have detected the highest energy gamma rays ever from a dead star called a pulsar. The energy of these gamma rays clocked in at 20 tera-electronvolts, or about ten trillion times the energy of visible light. This observation is hard to reconcile with the theory of the production of such pulsed gamma rays, as the international team reports in the journal Nature Astronomy.

Pulsars are the left-over corpses of stars that spectacularly exploded in a supernova. The explosions leave behind a tiny, dead star with a diameter of just some 20 kilometres, rotating extremely fast and endowed with an enormous magnetic field. "These dead stars are almost entirely made up of neutrons and are incredibly dense: a teaspoon of their material has a mass of more than five billion tonnes, or about 900 times the mass of the Great Pyramid of Giza," explains H.E.S.S. scientist Emma de Oña Wilhelmi, a co-author of the publication working at DESY.

Pulsars emit rotating beams of electromagnetic radiation, somewhat like cosmic lighthouses. If their beam sweeps across our solar system, we see flashes of radiation at regular time intervals. These flashes, also called pulses of radiation, can be searched for in different energy bands of the electromagnetic spectrum. Scientists think that the source of this radiation are fast electrons produced and accelerated in the pulsar's magnetosphere, while traveling towards its periphery. The magnetosphere is made up of plasma and electromagnetic fields that surround and co-rotate with the star. "On their outward journey, the electrons acquire energy and release it in the form of the observed radiation beams," says Bronek Rudak from the Nicolaus Copernicus Astronomical Center (CAMK PAN) in Poland, also a co-author.

The Vela pulsar, located in the Southern sky in the constellation Vela (sail of the ship), is the brightest pulsar in the radio band of the electromagnetic spectrum and the brightest persistent source of cosmic gamma rays in the giga-electronvolts (GeV) range. It rotates about eleven times per second. However, above a few GeV, its radiation ends abruptly, presumably because the electrons reach the end of the pulsar's magnetosphere and escape from it.

But this is not the end of the story: using deep observations with H.E.S.S., a new radiation component at even higher energies has now been discovered, with energies of up to tens of tera-electronvolts (TeV). "That is about 200 times more energetic than all radiation ever detected before from this object," says co-author Christo Venter from the North-West University in South Africa. This very high-energy component appears at the same phase intervals as the one observed in the GeV range. However, to attain these energies, the electrons might have to travel even farther than the magnetosphere, yet the rotational emission pattern needs to remain intact.

"This result challenges our previous knowledge of pulsars and requires a rethinking of how these natural accelerators work," says Arache Djannati-Atai from the Astroparticle & Cosmology (APC) laboratory in France, who led the research. "The traditional scheme according to which particles are accelerated along magnetic field lines within or slightly outside the magnetosphere cannot sufficiently explain our observations. Perhaps we are witnessing the acceleration of particles through the so-called magnetic reconnection process beyond the light cylinder, which still somehow preserves the rotational pattern? But even this scenario faces difficulties to explain how such extreme radiation is produced."

Read more at Science Daily

And then there were 6 -- kinds of taste, that is

Japanese scientist Kikunae Ikeda first proposed umami as a basic taste -- in addition to sweet, sour, salty and bitter -- in the early 1900s. About eight decades later, the scientific community officially agreed with him.

Now, scientists led by researchers at the USC Dornsife College of Letters, Arts and Sciences have evidence of a sixth basic taste.

In research published Oct. 10 in Nature Communications, USC Dornsife neuroscientist Emily Liman and her team found that the tongue responds to ammonium chloride through the same protein receptor that signals sour taste.

"If you live in a Scandinavian country, you will be familiar with and may like this taste," says Liman, professor of biological sciences. In some northern European countries, salt licorice has been a popular candy at least since the early 20th century. The treat counts among its ingredients salmiak salt, or ammonium chloride.

Scientists have for decades recognized that the tongue responds strongly to ammonium chloride. However, despite extensive research, the specific tongue receptors that react to it remained elusive.

Liman and the research team thought they might have an answer.

In recent years, they uncovered the protein responsible for detecting sour taste. That protein, called OTOP1, sits within cell membranes and forms a channel for hydrogen ions moving into the cell.

Hydrogen ions are the key component of acids, and as foodies everywhere know, the tongue senses acid as sour. That's why lemonade (rich in citric and ascorbic acids), vinegar (acetic acid) and other acidic foods impart a zing of tartness when they hit the tongue. Hydrogen ions from these acidic substances move into taste receptor cells through the OTOP1 channel.

Because ammonium chloride can affect the concentration of acid -- that is, hydrogen ions -- within a cell, the team wondered if it could somehow trigger OTOP1.

To answer this question, they introduced the Otop1 gene into lab-grown human cells so the cells produce the OTOP1 receptor protein. They then exposed the cells to acid or to ammonium chloride and measured the responses.

"We saw that ammonium chloride is a really strong activator of the OTOP1 channel," Liman said. "It activates as well or better than acids."

Ammonium chloride gives off small amounts of ammonia, which moves inside the cell and raises the pH, making it more alkaline, which means fewer hydrogen ions.

"This pH difference drives a proton influx through the OTOP1 channel," explained Ziyu Liang, a PhD student in Liman's lab and first author on the study.

To confirm that their result was more than a laboratory artifact, they turned to a technique that measures electrical conductivity, simulating how nerves conduct a signal. Using taste bud cells from normal mice and from mice the lab previously genetically engineered to not produce OTOP1, they measured how well the taste cells generated electrical responses called action potentials when ammonium chloride is introduced.

Taste bud cells from wildtype mice showed a sharp increase in action potentials after ammonium chloride was added while taste bud cells from the mice lacking OTOP1 failed to respond to the salt. This confirmed their hypothesis that OTOP1 responds to the salt, generating an electrical signal in taste bud cells.

The same was true when another member of the research team, Courtney Wilson, recorded signals from the nerves that innervate the taste cells. She saw the nerves respond to addition of ammonium chloride in normal mice but not in mice lacking OTOP1.

Then the team went one step further and examined how mice react when given a choice to drink either plain water or water laced with ammonium chloride. For these experiments, they disabled the bitter cells that also contribute to the taste of ammonium chloride. Mice with a functional OTOP1 protein found the taste of ammonium chloride unappealing and did not drink the solution, while mice lacking the OTOP1 protein did not mind the alkaline salt, even at very high concentrations.

"This was really the clincher," Liman said. "It shows that the OTOP1 channel is essential for the behavioral response to ammonium."

But the scientists weren't done. They wondered if other animals would also be sensitive to and use their OTOP1 channels to detect ammonium. They found that the OTOP1 channel in some species seems to be more sensitive to ammonium chloride than in other species. And human OTOP1 channels were also sensitive to ammonium chloride.

So, what is the advantage in tasting ammonium chloride and why is it evolutionarily so conserved?

Liman speculates that the ability to taste ammonium chloride might have evolved to help organisms avoid eating harmful biological substances that have high concentrations of ammonium.

"Ammonium is found in waste products -- think of fertilizer -- and is somewhat toxic," she explained, "so it makes sense we evolved taste mechanisms to detect it. Chicken OTOP1 is much more sensitive to ammonium than zebra fish." Liman speculates that these variations may reflect differences in the ecological niches of different animals. "Fish may simply not encounter much ammonium in the water, while chicken coops are filled with ammonium that needs to be avoided and not eaten."

But she cautions that this is very early research and further study is needed to understand species differences in sensitivity to ammonium and what makes OTOP1 channels from some species sensitive and some less sensitive to ammonium.

Towards this end, they have made a start. "We identified a particular part of the OTOP1 channel -- a specific amino acid -- that's necessary for it to respond to ammonium," Liman said. "If we mutate this one residue, the channel is not nearly as sensitive to ammonium, but it still responds to acid."

Moreover, because this one amino acid is conserved across different species, there must have been selective pressure to maintain it, she says. In other words, the OTOP1 channel's ability to respond to ammonium must have been important to the animals' survival.

Read more at Science Daily

Oldest fossil human footprints in North America confirmed

The 2021 results began a global conversation that sparked public imagination and incited dissenting commentary throughout the scientific community as to the accuracy of the ages.

"The immediate reaction in some circles of the archeological community was that the accuracy of our dating was insufficient to make the extraordinary claim that humans were present in North America during the Last Glacial Maximum. But our targeted methodology in this current research really paid off," said Jeff Pigati, USGS research geologist and co-lead author of a newly published study that confirms the age of the White Sands footprints.

The controversy centered on the accuracy of the original ages, which were obtained by radiocarbon dating. The age of the White Sands footprints was initially determined by dating seeds of the common aquatic plant Ruppia cirrhosa that were found in the fossilized impressions. But aquatic plants can acquire carbon from dissolved carbon atoms in the water rather than ambient air, which can potentially cause the measured ages to be too old.

"Even as the original work was being published, we were forging ahead to test our results with multiple lines of evidence," said Kathleen Springer, USGS research geologist and co-lead author on the current Science paper. "We were confident in our original ages, as well as the strong geologic, hydrologic, and stratigraphic evidence, but we knew that independent chronologic control was critical."

For their follow-up study, the researchers focused on radiocarbon dating of conifer pollen, because it comes from terrestrial plants and therefore avoids potential issues that arise when dating aquatic plants like Ruppia. The researchers used painstaking procedures to isolate approximately 75,000 pollen grains for each sample they dated. Importantly, the pollen samples were collected from the exact same layers as the original seeds, so a direct comparison could be made. In each case, the pollen age was statistically identical to the corresponding seed age.

"Pollen samples also helped us understand the broader environmental context at the time the footprints were made," said David Wahl, USGS research geographer and a co-author on the current Science article. "The pollen in the samples came from plants typically found in cold and wet glacial conditions, in stark contrast with pollen from the modern playa which reflects the desert vegetation found there today."

In addition to the pollen samples, the team used a different type of dating called optically stimulated luminescence, which dates the last time quartz grains were exposed to sunlight. Using this method, they found that quartz samples collected within the footprint-bearing layers had a minimum age of ~21,500 years, providing further support to the radiocarbon results.

With three separate lines of evidence pointing to the same approximate age, it is highly unlikely that they are all incorrect or biased and, taken together, provide strong support for the 21,000 to 23,000-year age range for the footprints.

Read more at Science Daily