Paul Sutter is an astrophysicist at The Ohio State University and the chief scientist at COSI Science Center. Sutter is also host of Ask a Spaceman, RealSpace, and COSI Science Now.
There are some things in the universe that you simply can't escape. Death. Taxes. Black holes. If you time it right, you can even experience all three at once.
Black holes are made out to be uncompromising monsters, roaming the galaxies, voraciously consuming anything in their path. And their name is rightly deserved: once you fall in, once you cross the terminator line of the event horizon, you don't come out. Not even light can escape their clutches.
But in movies, the scary monster has a weakness, and if black holes are the galactic monsters, then surely they have a vulnerability. Right?
Hawking to the rescue
In the 1970s, theoretical physicist Stephen Hawking made a remarkable discovery buried under the complex mathematical intersection of gravity and quantum mechanics: Black holes glow, ever so slightly, and, given enough time, they eventually dissolve.
Wow! Fantastic news! The monster can be slain! But how? How does this so-called Hawking Radiation work?
Well, general relativity is a super-complicated mathematical theory. Quantum mechanics is just as complicated. It's a little unsatisfying to respond to "How?" with "A bunch of math," so here's the standard explanation: the vacuum of space is filled with virtual particles, little effervescent pairs of particles that pop into and out of existence, stealing some energy from the vacuum to exist for the briefest of moments, only to collide with each other and return to nothingness.
Every once in a while, a pair of these particles pops into existence near an event horizon, with one partner falling in and the other free to escape. Unable to collide and evaporate, the escapee goes on its merry way as a normal non-virtual particle.
Voila: The black hole appears to glow, and in doing so — in doing the work to separate a virtual particle pair and promote one of them into normal status — the black hole gives up some of its own mass. Subtly, slowly, over the eons, black holes dissolve. Not so black anymore, huh?
Here's the thing: I don't find that answer especially satisfying, either. For one, it has absolutely nothing to do with Hawking's original 1974 paper, and for another, it's just a bunch of jargon words that fill up a couple of paragraphs but don't really go a long way to explaining this behavior. It's not necessarily wrong, just…incomplete.
Let's dig into it. It'll be fun.
The way of the field
First things first: "Virtual particles" are neither virtual nor particles. In quantum field theory — our modern conception of the way particles and forces work — every kind of particle is associated with a field that permeates all of space-time. These fields aren't just simple bookkeeping devices. They are active and alive. In fact, they're more important than particles themselves. You can think of particles as simply excitations — or "vibrations" or "pinched-off bits," depending on your mood — of the underlying field.
Sometimes the fields start wiggling, and those wiggles travel from one place to another. That's what we call a "particle." When the electron field wiggles, we get an electron. When the electromagnetic field wiggles, we get a photon. You get the idea.
Sometimes, however, those wiggles don't really go anywhere. They fizzle out before they get to do something interesting. Space-time is full of the constantly fizzling fields.
What does this have to do with black holes? Well, when one forms, some of the fizzling quantum fields can get trapped — some permanently, appearing unfortunately within the newfound event horizon. Fields that fizzled near the event horizon end up surviving and escaping. But due to the intense gravitational time dilation near the black hole, thy appear to come out much, much later in the future.
In their complex interaction and partial entrapment with the newly forming black hole, the temporary fizzling fields get "promoted" to become normal everyday ripples — in other words, particles.
So, Hawking Radiation isn't so much about particles opposing into existence near a present-day black hole, but the result of a complex interaction at the birth of a black hole that persists until today.
Read more at Discovery News
No comments:
Post a Comment