This could be a possible explanation for why nothing is seen within the orbit of Mercury, although for now the evidence is based on modelling and the fact that the region between Mercury and the sun is so barren, the authors say.
“The only (physical) evidence that super-Earths could have formed in our solar system is the lack of anything in that region, not even a rock,” said lead author Rebecca Martin, an assistant professor at the University of Nevada, Las Vegas, in an email to Discovery News. ”So they could have formed there sweeping up all of the solid material, but then later fell into the sun.”
Observations of super-Earth exoplanets outside the solar system suggest they could have formed in two locations: in situ (where you see them today) or farther out from their observed locations, where of course they would have migrated over time.
Mercury transits the sun as seen by the Solar and Heliospheric Observatory in 2006. Credit: Mercury transits the Sun as seen from Earth in 2006. |
“The size of the dead zone must be large enough that it lasts for the entire disc lifetime,” Martin added. “Since different systems may have different dead zone sizes, formation in the inner parts may not be possible in all systems and thus both formation locations may be operating.”
Of the super-Earths that have been observed, the researchers noted two distinct types depending on their density. They conclude that planets that form farther out in the disc would be less dense, since water and other volatiles will freeze out in the cooler outer parts of the disc. Those that are closer one would be denser.
Read more at Discovery News
No comments:
Post a Comment