I want you to call the last person you complained to about your “crappy” day and apologize for wasting their time. Go on. I’ll wait. |
Few parasitoids are more bizarre or disturbing than the wasps of the genus Glyptapanteles, whose females inject their eggs into living caterpillars. There, the larvae mature, feeding on the caterpillar’s fluids before gnawing through its skin en masse and emerging into the light of day. Despite the trauma, not only does the caterpillar survive—initially at least—but the larvae mind-control it, turning their host into a bodyguard that protects them as they spin their cocoons and finish maturing. The caterpillar eventually starves to death, but only after the tiny wasps emerge from their cocoons and fly away.
Because he has awesome ideas and not because he’s some kind of sadist, ecologist Arne Janssen of the University of Amsterdam brought this remarkable lifecycle into the lab a few years back to study it. What he and his colleagues confirmed for the first time is that not only do Glyptapanteles larvae actively manipulate the behavior of their hosts, but by transforming caterpillars into bodyguards, they greatly boost their chances of survival compared to their unprotected comrades.
A caterpillar stands guard over the Glyptapanteles wasps that erupted from its body. That’s a bit like you—OK there’s really nothing in the world to compare this to. |
“Most parasitoids eat the host completely empty,” said Janssen. “The Glyptapanteles don’t do that. We don’t know exactly why, but one of the reasons may be that if you kill the host it cannot defend you afterwards.”
Inside the caterpillar, the larvae will go through several stages, or molts, to shed their exoskeletons as they expand. During all of this, the caterpillar, which grows more and more bloated as the larvae mature, isn’t yet showing any signs of being manipulated. Incredibly, you can’t even tell it’s behaving any differently, even as it swells to the point where it looks like it’s going to burst, like a can of soda in a freezer … that’s filled with parasitic larvae instead of soda, I guess.
Inevitably, though, the larvae must make their exit. All 80 at once. Over the course of an hour. They release chemicals that paralyze the caterpillar, then each individual begins gnawing its way out. It’s a horrific happening, as you can see in the amazing National Geographic video below, yet keep in mind that the caterpillar survives this incredible trauma.
How? Well, it’s thought that the larvae time their final molt to coincide with the exit, so as they squeeze through the caterpillar’s skin, the exoskeleton they leave behind blocks the exit hole. Thus they perform their own slapdash surgery on their gravely wounded host.
If You’ll Be My Bodyguard, I Can Be Your Long-Lost Pal
As the larvae congregate in a mass and begin spinning their cocoons, the caterpillar snaps out of it and helps them, using its own silk to construct a protective covering. And you can imagine it has somewhat conflicted feelings about all of this, much like Kevin Costner’s emotional struggles in The Bodyguard.
Once everyone is done spinning, the caterpillar switches into defense mode, lashing out at not only predatory insects, but other wasps known as hyperparasitoids. The Glyptapanteles pupae (the final stage before they complete their development), you see, don’t have it so easy. In a nice little bit of poetic justice, these hyperparasitoids will inject their own eggs into Glyptapanteles.
What Janssen found is that when he removed the caterpillar and left the pupae to fend for themselves, twice as many fell prey to either predators or hyperparasitoids. It would seem, then, that Glyptapanteles has evolved this behavior to boost its chances of survival. Interestingly, though, the caterpillar itself attracts predators that can also opportunistically attack the pupae.
“This suggests that there may also be costs involved with the behavioral changes in the caterpillar: Behavioral changes might attract some predators against which the caterpillar cannot defend the parasitoid pupae,” Janssen and his colleagues wrote in a paper. “Nevertheless, the overall effect of caterpillar presence on survival of parasitoid pupae was positive.”
Janssen and his colleagues may have found their answer when they dissected caterpillars that had given painful birth to larvae three to four days before. Remarkably, they found one or two larvae still hanging out inside. It could well be that they were staying behind to mind-control the host with some kind of cocktail of chemicals in order to protect their siblings, which “would represent a cost of host manipulation: some offspring are sacrificed for higher survival of their kin,” Janssen wrote.
Read more at Wired Science
No comments:
Post a Comment